

AC SPEED CONTROL EQUIPMENT

VAT2000

3ph 200V-230V System 0.4 to 45k. 7 3ph 380V-460V System 0.4 to 37 2kW

INSTRUCTION MANUAL

----- NOTICE -----

- 1. Read this manual thoroughly before using the VAT2000, and store in a safe place for reference.
- 2. Make sure that this manual is delivered to the final user.
- 3. The contents of this manual can be changed without notice

GE POWER CONTROLS

Contents

PREC	AUTIONS FOR SAFETY	. iv
<nam< th=""><th>es of each part></th><th>. VIII</th></nam<>	es of each part>	. VIII
Chapt	er 1 Delivery Inspection and Storage	. 1-1
	Delivery inspection and storage	
	Details of rating nameplate and catalogue numbers	
		A
	er 2 Installation and Wiring	
	Installation environment	
	Installation	
	Precautions for power supply and motor wiring	
2-4	Precautions for wiring to the control signal	. 2-8
0 1 4	er 3 Test Operation and Adjustment	
Chapt	er 3 Test Operation and Adjustment	. 3-1
3-1	Control selection	. 3-2
3-2	Selection of operation modeFlow of test operation	. 3-2
3-3	Flow of test operation	. 3-3
3-4	Preparation for operation	. 3-4
3-5	Settings of data before operation	. 3-4
3-6	Settings of data before operation	. 3-4
3-7	lest operation with operation panel	. 3-15
Chant	for 4. Operation Panel	1_1
Cπαρι 1-1	ter 4 Operation Panel Details of operation panel	 -1 1_1
4-1 4-2	Modes and parameters	. 1 -1
1-2	Changing modes	. 4 -3 1-19
	Reading parameters in monitor mode	
	Reading and adjusting block A, B & C parameters	
	Reading the changed parameters (Non-default value parameter list)	
	Customising block B. C parameter	
	Reading fault in to y	
	Troughly lady like any	20
Chapt	er 5 Control: out / Output	. 5-1
-	Input / Output Terminal Function	
	Control Input/ Output Circuit	
	Programmable sequence input function (PSI)	
	Programmable sequence output function (PSO)	
	equence input logic	
	Changing of terminal functions	
	rogrammable analog input function (PAI)	
	Programmable analog output function (PAO)	
	Selecting the setting data	5-14

Chapt	er 6 Control Functions and Parameter Settings	6-1
6-1	Monitor parameters	6-1
6-2	Block-A parameters	6-5
6-3	Block-B parameters	6-7
6-4	Block-C parameters6	-20
6-5	Block-U parameters6	-32
	Function explanation6	
6-7	Application to square low variable torque load6	i-73
6-8	Adjusting the vector control speed control related parameters6	-76
Chapt	er 7 Options	. 1
	Outline of options	
	VAT2000's Main options	
7-3	Built-in PCB option	7-6
7-4	Dynamic braking (DBR)	7-7
7-5	Electromagnetic compliance, EMC	'-11
7-6	Reactors and Surge Absorber Filters7	-13
Chapt	ter 8 Maintenance and Inspection	8-1
8-1	Inspection items	8-1
8-/	Measunno devices	α- <i>/</i>
8-3	Protective functions	8-3
8-4	Troubleshooting with fault display	8-4
8-5	Protective functions Troubleshooting with fault display	8-8
Apper	ndix 1 Type Description System	A-1
• •	2 Outline Dimension Dravings	A-9
	3 Fault Codes A	۱-10
	4 7-segment LED Display	\-12

Preface

Please read this manual thoroughly before use, and keep the manual at hand for later reference. Also make sure that this manual is delivered to the final users.

WARNING

ALWAYS READ THIS MANUAL THOROUGHLY BEFORE USING THE VAT2000

THIS INVERTER CONTAINS HIGH VOLTAGE CIRCUITS THAT MAY BE FATAL TO HUMANS. USE EXTREME CAUTION DURING INSTALLATION. MAINTENANCE MUST BE PERFORMED BY QUALIFIED TECHNICIANS, AND ALL POWER COURCES MUST BE DISCONNECTED BEFORE ANY MAINTENANCE. SUFFICIENT NOTICE MUST BE GIVEN TO THE GENERAL OPERATORS AND WORKERS BEFORE STALLING.

• ELECTRIC SHOCK MAY OCCUR IF THE FOLLOWING POINTS A R. NOT OBSERVED.

- DO NOT OPEN THE OUTER-COVER (FRONT COVEF, v. HILT THE POWER IS ON.
- A CHARGE STILL REMAINS IN THE INVERTER V HILE THE INDICATOR IS LIT EVEN IF THE POWER HAS BEEN TURNED OFF DO NOT OPEN THE OUTER-COVER (FRONT COVER) IN THIS CASE. WAT AT LEAST 10 MINUTES AFTER THE INDICATOR GOES OUT.
- DO NOT CONTACT THE ELECTRICAL PROOF WHILE THE CHARGE LAMP ON THE PCB IS LIT. PERFORM SERVICING, ETC., AFTER WAITING AT LEAST 10 MINUTES AFTER THE LAMP GOTS OUT.
- ALWAYS GROUND THE INVERTER CASE. THE GROUNDING METHOD MUST COMPLY WITH THE LAWS OF THE COUNTRY WHERE THE INVERTER IS BEING INSTALLED.

• THE INVERTER MAY BE DESTRUYED IF THE FOLLOWING POINTS ARE NOT OBSERVED.

- OBSERVE THE (IN SPECIFICATIONS.)
- CONNECT ADJUATE CABLES TO THE INPUT/OUTPUT TERMINALS.
- ALWAYS KEEP THE INVERTER INTAKE/OUTTAKE PORTS CLEAN, AND PROVIDE ENOUGH LETTLATION.
- ALV/AYS 3SERVE THE CAUTIONS LISTED IN THIS INSTRUCTION MANUAL.
- THERE MAY BE SOURCES OF NOISE AROUND THIS INVERTER AND MOTOR DRIVEN BY THIS INVERTER. CONSIDER THE POWER SUPPLY SYSTEM, INSTALLATION PLACE AND WIN NG METHOD BEFORE INSTALLATION.
 - NSTALL THIS INVERTER AWAY FROM DEVICES THAT HANDLE MINUTE SIGNALS, SUCH AS MEDICAL EQUIPMENT IN PARTICULAR. ALSO SEPARATE THE DEVICES LECTRICALLY, AND TAKE SUFFICIENT NOISE MEASURES.
- TAKE SUFFICIENT SAFETY MEASURES WHEN USING THIS INVERTER FOR PASSENGER TRANSPORTATION, SUCH AS IN LIFTS (ELEVATORS).

Precautions For Safety

Items to be observed to prevent physical damage and to ensure safe use of this product are noted on the product and in this instruction manual.

- Please read this instruction manual and enclosed documents before starting operation to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation. After reading, always store this manual where it can be accessed easily.
- The safety precautions are ranked as "DANGER" and "CAUTION" In this instruction manual.

DANGER

: When a dangerous situation may occur if handling is mistaken leading to fatal or major injuries.

CAUTION

: When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as **CAUTION** may lead to major results depending on the cituation. In any case, important information that must be observed is described.

• This instruction manual is written on the premise that the user has an undersanding of the inverter. Installation, operation, maintenance and inspection of this product must be done by a qualified person. Even qualified persons must undergo periodic training.

Qualified refers to satisfying the following conditions.

- o The person has thoroughly read and understood this instruction manual
- The person is well versed in the installation, operation maintained and inspection of this product, and understands the possible dangers.
- The person is informed on matters related to starting, stopping, installation, locks and tag displays, and has been trained in the operation and tag displays.
- o The person has been trained on the mair, nancy, inspection and repairs of this product.
- o The person has been trained on protective to its used to ensure safety.

1. Transportation and installation

CAUTION

- Always transport the product with an appropriate amount according to the products weight Failure to observe this could lead to injuries.
- Install the inverter and brake resistor on non-combustible material such as metal. Failure to observe this could lead to fires.
- Do not place the product near inflammable items. Failure to observe this could lead to fires.
- Do not hold the from cover while transporting the product.
 Fairre to observe this could lead to injuries from dropping.
- To not led conductive materials such as screws or metal pieces and inflammable material such as oil en ar the product.
 - Failue to observe this could lead to fires.
- Install the product in a place that can withstand the weight of the product, and follow the instruction manual
 - Failure to do so could lead to injuries from dropping.
- Do not install and operate an inverter that is damaged or that is missing parts.
 Failure to observe this could lead to injuries.
- Always observe the conditions described in the instruction manual for the installation environment.
 Failure observe this could lead to faults.

2. Wiring

DANGER

- Always turn the device's input power OFF before starting wiring.
 Failure to do so could lead to electrical shocks or fires.
- Carry out grounding that complies with the standards of the country where the inverter is being installed. Failure to do so could lead to electrical shocks or fires.
- Wiring must always be done by a qualified electrician.
 Failure to observe this could lead to electrical shocks or fires.
- Always install the device before starting wiring.
 Failure to do so could lead to electrical shocks or injuries.
- Prepare a breaker such as an MCCB that matches the capacity for the inverter's power supply side Failure to do so could lead to fires.

CAUTION

- Do not connect an AC power supply to the output terminals (U, V, W). Failure to observe this could lead to electrical shocks or fires.
- Confirm that the product's rated voltage and frequency match the power supply voltage and frequency.
 Failure to do so could lead to injuries or fires.
- Install an overheating protection device on the dynamic electrical-discharge braking resistor, and shut off the power with an error signal.
 - Failure to do so could lead to fires in the event of abnormal overheating.
- Do not directly connect a resistor to the DC terminals (between L+ L-2, and L-). Failure to observe this could lead to fires.
- Tighten the terminals screws with the designated tighten no torque Failure to do so could lead to fires.
- Correct connect the output side (U, V, W).
 - Failure to do so could cause the motor to rotate in eval and the machine to be damaged

3. Operation

DANGER

- Always install the from cover beton turning the input power ON. Never remove the cover while the power is ON. There are socious in the from PCB that are charged with high voltages. Failure to observe this sould and to electrical shocks.
- Never touch the swit hes . h wet hands.
 - Failure to observe this could lead to electrical shocks.
- Never touch the inventor's terminals while the inverter power is ON even if the operation is stopped Failure to observe this could lead to electrical shocks
- Selection of the retry function could lead to unexpected restarting when an alarm occurs. The machine may start suddenly if the power is turned ON when the automatic start function is selected Do not go near the machine.

Fars to do so could lead to injuries.

Design the machine so that physical safety can be ensured even if the machine restarts.)

The machine may not stop when a stop command is issued if the deceleration stop function is pelected. Prepare a separate emergency stop switch.

Failure to do so could lead to injuries.

Resetting of an alarm while the run signal is input could lead to unexpected restarting. Always confirm
that the run signal is OFF before resetting the alarm.

Failure to do so could lead to injuries.

Continue from previous page

CAUTION

- The heat sink and dynamic braking resistor are heated to high temperatures, so never touch them.
 Failure to observe this could lead to burns.
- Do not block the inverter's ventilation holes. Failure to observe this could lead to fires.
- The inverter operation can easily be set from low speeds to high speeds, so confirm that the operation is within the tolerable range for the motor or machine before making settings.
 Failure to do so could lead to injuries.
- Prepare holding brakes when necessary. Holding is not possible with the inverter's brake functions.
 Failure to do so could lead to injuries.
- Confirm the operation of the motor as a single unit before operating the machine. Failure to do so could lead to injuries or machine damage due to unforeseen movements.
- Always prepare a safety backup device so that the machine is not placed in a hazardous situ. tion
 when an error occurs in the inverter.
 - Failure to do so could lead to injuries or machine damage.

4. Maintenance, Inspection and Part Replacement

DANGER

- Always wait at least 20 minutes after turning the input power OFF before starting inspections. Make sure that the displays on the operation panel have gone out before removing the front cover. Remove the front cover, and confirm that the "CHARGE" LED on the unit has gone out. Also check that the voltage between terminals L+1 or L+2 and L- is 15V or is sefore starting the inspections. (Check with the "CHARGE" LED if the unit is not provided with the pre-terminal.) Failure to observe this could lead to electrical shocks:
- Maintenance, inspections and part replacement roust to one by a designated person. (Remove all metal accessories such as watches, by celets, etc., before starting the work.) (Always use an insulation measure tool.)
- Failure to observe this could lead to electrical shocks and injuries.
- Always turn the power OFF before inspecting the motor or machine. A potential is applied on the motor terminal even when the motor is stopped.

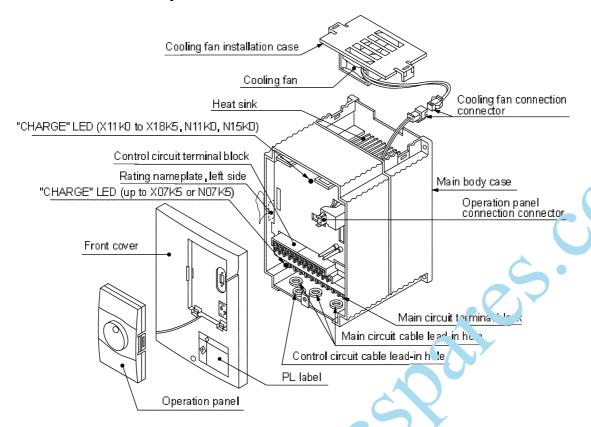
 Failure to do so could lead to electrical shocks and injuries.
- Do no use parts other than the a designated for the replacement parts. Failure to observe this could lead to fires.

CAUTION

• Vacuum the inverted with a vacuum cleaner to clean it. Do not use organic solvents. Failure to observathis could lead to fires or damage.

5. Others

DANGER


• . ver nodify product.

Failure to observe this could lead to electrical shocks or injuries.

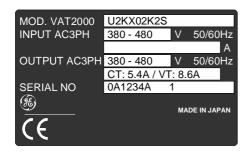
CAUTION

Dispose of this product as industrial waste.

<Names of each part>

For U2KN15K0S, U2KX 8K5S and smaller

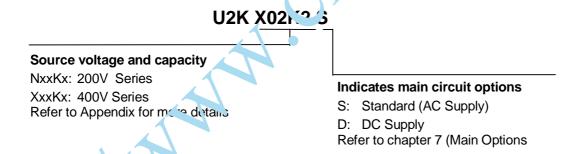
For U2KN18K5S to U2KN37K0S and U2KX22K0S or larger


Chapter 1 Delivery Inspection and Storage

1-1 Delivery Inspection and Storage

- 1) Remove the inverter from the packaging, and check the details on the rating nameplate to confirm that the inverter is as ordered. The rating nameplate is on the left side of the unit.
- 2) Confirm that the product has not been damaged.
- 3) If the inverter is not to be used for a while after purchasing, store it in a place with no humidity or vibration in the packaged state.
- 4) Always inspect the inverter before using after storing for a long period. (Refer to 8-1.)

1-2 Details of Rating Nameplate and catalogue numbers


1) The following details are listed on the rating nameplate.

CAUTION

CT: Rating for standard applications (Constant Torque)
VT: Rating only for Fans and rumps (Variable Torque)
CT/VT settings are described on chapter 6-6

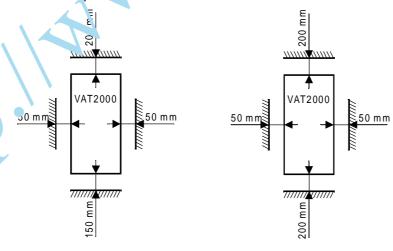
2) Using the above type as an example, the type of displayed as follows:

The VAT20CO can be performed by the user with various optional interface plug-in cards. Refer to Chapter 7 (PCB Ortions)

Chapter 2 Installation and Wiring

CAUTION

- Always transport the product with an appropriate amount according to the products weight.
 Failure to observe this could lead to injuries.
- Install the inverter, dynamic braking unit and resistor, and other peripheral devices on non-combustible material such as metal.


Failure to observe this could lead to fires.

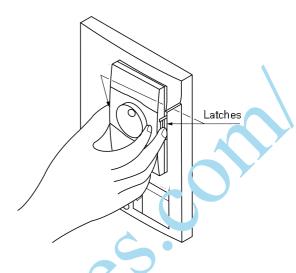
- Do not place the product near inflammable items.
 - Failure to observe this could lead to fires.
- Do not hold the front cover while transporting the product.
 Failure to observe this could lead to injuries from dropping.
- Do not let conductive materials such as screws or metal pieces and inflammable materials such as our enter the product.
 - Failure to observe this could lead to fires.
- Install the product in a place that can withstand the weight of the product, and follow the instruction manual.
 - Failure to do so could lead to injuries from dropping.
- Do not install and operate an inverter that is damaged or that is missing parts
 Failure to observe this could lead to injuries.
- Always observe the conditions described in the instruction manual for the instruction environment.
 Failure to observe this could lead to faults.

2-1 Installation Environment

Observe the following points when installing the inverter.

- 1) Install the inverter vertically so that the wire lead-in toles face downward.
- 2) Make sure that the ambient temperature is 10°C to 50°C.
- 3) Avoid installation in the following environment.
 - Places subject to direct sunlight
 - Places with oil mist, dust or cotton int, or subject to salty winds
 - Places with corrosive gas, explosive gas or high humidity levels
 - Places near vibration sources such as dollies or press machines
 - Places made of flammable materials such as wood, or places that are not heat resistant
- 4) Ensure ventilation space around the inverter.

For N15K0, X18K5 and smaller


For N18K5, X22K0 and larger

2-2 Installation

Installation and wiring for the N15K0, H18K5 and smaller drives, and wiring for the N18K5 and X22K0 and larger drives are carried out with the front cover removed.

Before removing the front cover, always remove the operation panel from the unit. If the front cover is removed without removing the operation panel, the unit could drop off the operation panel and be damaged. To remove the operation panel, press in the left and right latches inward and pull off the panel as shown on the right.

When the installation and wiring work are completed, install the front cover, and then install the operation panel. At that time, make sure that the latches on the left and right of the operation panel are securely caught.

(1) N15K0, X18K5 and smaller (Fig. 2.2)

Fix the VAT2000 on the four corners, note that the lower two mounting holes are notched. Remove the front cover, and wire to the main circuit and control terminal block.

(2) N18K5, X22k) and larger (Fig. 2.3)

Fix the VA 2000 on the four corners, note that the lower two mounting holes are notched.

The se frames weitg more than 25kg, so mountain by two workers is recommended.

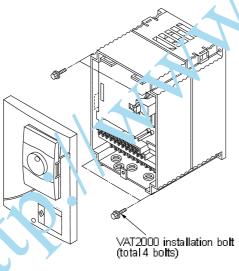


Fig 2.2

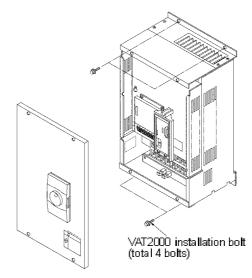


Fig 2.3

2-3 Precautions for Power Supply and Motor Wiring

DANGER

- Always turn the device's input power OFF before starting wiring.
 Failure to do so could lead to electrical shocks or fires.
- Carry out grounding that complies with the standards of the country where the inverter is being installed.

Failure to do so could lead to electrical shocks or fires.

- Wiring must always be done by a qualified electrician.
 Failure to observe this could lead to electrical shocks or fires.
- Always install the device before starting wiring.
 Failure to do so could lead to electrical shocks or injuries.
- Prepare a breaker such as an MCCB or fuses that matches the capacity for the inverter's power supply side.

Failure to do so could lead to fires.

CAUTION

- Do not connect an AC power supply to the output terminals (U, V, W).
 Failure to observe this could lead to injuries or fires.
- Confirm that the product's rated voltage and frequency match the power poply voltage and frequency.
 Failure to do so could lead to injuries or fires.
- Install an overheating protection device on the dynamic braking research and shut off the power with an error signal.

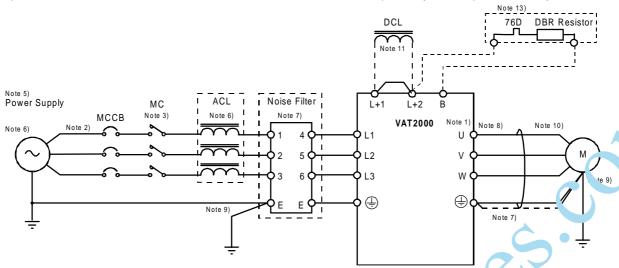
Failure to do so could lead to fires in the event of abnormal overheating.

- Do not directly connect a resistor to the DC terminals (between 1, L.2 and L-).
 Failure to observe this could lead to fires.
- Tighten the terminal screws with the designated tightening torr ue.
 - Failure to do so could lead to fires.
- Correct connect the output side (U, V, W).

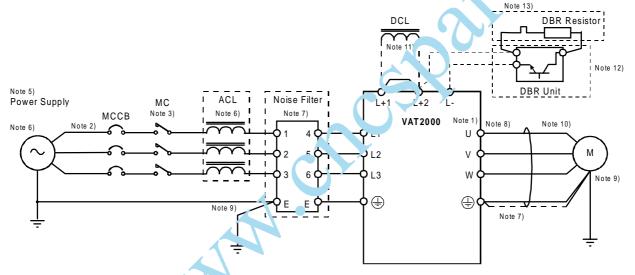
Failure to do so could cause the motor to rotate in reverse and the machine to be damaged.

Refer to Fig. 2-4 and wire the main circuits for the power supply and motor, etc. Always observe the following precautions for wiring.

CAUTION


There is a risk of electrical shoulds.

The VAT2000 has a built-in electrolytic capacitor, so a charge will remain even when the inverter power is turned OFF. Alvays observe the following times before carrying out wiring work.


- Wait at least 20 minutes after turning the power OFF before starting work. Make sure that the displays on the operation panel have gone out before removing the cover.
- After removing the cover, confirm that the "CHARGE" LED at the following position has gone out. Also check that the voltage between terminals L+1 or L+2 and L- is 15V or less before starting the inspections. (Check with the "CHARGE" LED if the unit is not provided with the L- terminal.)

Main circuit wiring

a) U2KN07K5S, U2KX07K5S and smaller units. For DC Drives (main option "D"), check Chapter 7-2.

b) From U2KN11K0S, and U2KX11K0S to U2KX37K0S. For DC Drives (main aption. "), check Chapter 7-2.

c) U2KX45K5S and larger units. For DC Drives (main option "D"), check Chapter 7-2.

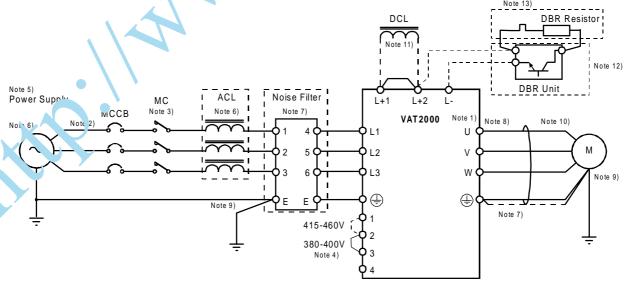


Fig. 2.4 Example of main circuit wiring

Note 1) Inverter Input / Output terminals

The inverter input terminals are L1, L2 and L3. The output terminals to the motor are U, V and W. Do not connect the power supply to the U, V, W terminals. incorrect wiring will cause to inverter damage or fires.

Note 2) Wire size

For the main circuit wiring shown in Fig. 2-4, use wires recommended in Table 2-1, including wire size range, ring terminal and tightening torque. The applicable wire given in Table 2-1 is for using in constant torque ratings; for variable torque, select the wire given for one higher rating, shifting one column to the right.

Example: For the X45K0 drive variable torque, use the column of N30K0 drive (for the N37K0 variable torque, use the N37K0 column however)

Table 2-1 Applicable wire sizes and terminals

a) Power supply and motor wiring (L1, L2, L3, U, V, W, L+1, L+2, L-)

Inverter type VAT2000	200V Series	~02K2	04K0	05K5	07K5		11K0	15K0		18K5 22K0	30rv	37K0
	400V Series	~04K0	05K5 07K5	11K0	15K0	18K5	22K0		30K0	45KD		
Applicable wire	mm²	2.5	4	6.3	8	1	6	1		35	60	100
Max. ring terminal (mm)	d1	8.5	9.5		12		16	÷.5		22		28.5
₹ d2	d2	4.	.3		5.3	C	6).		8.4		10.5
Terminal screw	N	14		M5	1	M6		M8			M10	
Tightening torque [N	l•m]	1.	.2		2		4.5		9			18

Inverter type VAT2000	400V Series	55K0 75K0	€ 1K0 1 1 1′	123K 160K	200K	250K 315K
Applicable wire	mm²	100	150	100x2p	150x2p	200x2p
Max. ring terminal (mm)	d1	5	36	28.5	36	44
d2	d2		10.5		1	7
Terminal scre			M10		M	16
Tightening orque [19	m]		28.9		12	25

Note 1) ?p refers to two parallel connections

b) DBR wiring (N07K5, X07K5 and smaller L+2, B) (N11K0, X11K0 and larger L+2, L-)

Inverter type VAT2000	200V Series	~02K2	04K0	05K5	07K5		11K0	15K0	18K5 22K0	30K0	37K0
	400V Series	~04K0	05K5 07K5	11K0	15K0	18K5		22K0	30K0	37K0 45K0	
Applicable wire	mm²			2	.5			4	6.3	1	6
Max. ring terminal (mm)	d1	8	.5		9.5		1	2	1	28.5	
d2	d2	4.	.3		5.3		6	.4	8	.4	10.5
Terminal screw	U	N	14		M5		N	16	N	M10	
Tightening torque [N	l•m]	1.	1.2 2				4	.5	(18	

Inverter type VAT2000	400V Series	55K0 75K0	90K0 110K	123K 160K	200K	250K 315K		
Applicable wire	mm²		16		25			
Max. ring terminal (mm)	d1		16		3	30		
5 d2	d2		10.5			7		
Terminal screw			M10	M16				
Tightening torque [N	å m]		28.9	125				

Note 3) Circuit Breaker for wiring

Install an MCCB or Fuse and MC on the power supply side of the inverter. Refer to Table 7.2 and select the MCCB or fuses. UL is meet using right fuse only

Note 4) Rated voltage for auxiliary experiment supply

For the 400 Series(X45K0 a. d'arger), wire the link in power supply terminal (TBA) according to the rated voltage of the power supply being used.

For 380 to 400V, link are ss 2-3 (factory setting state)

For 415 to 460V, Inc. 3 cross 1-2

Note 5) Refer to the an and it is a power supply voltage and frequency, and prepare a power supply suitable for the unit.

Note 6) Power supply capacity

Make sure that capacity of the transformer used as the inverter's power supply is within the following range (For 4% impedance transformer)

a Constant torque (U2KX45K0S and smaller): 500kVA or less

(U2KX55K0S and larger): Capacity is 10 times or less inverter capacity

b) Variable torque: Capacity that is 10-times or less inverter capacity

If the above values are exceeded, install an AC Reactor on the inverter's input side or a DC Reactor in the DC stage. (Refer to chapter 7-5).

Note 7) Noise measures

The inverter will generate high harmonic electromagnetic noise, so using the following noise measures is recommended. This must be followed for EMC (CE compliance)

- a) Insert a noise filter on the input side of the inverter. Refer to Table 7-2 and select the noise filter.
- b) Keep the wiring length between the noise filter and inverter to 30cm or less for the N00K4 to N22K0, X00K4 to X30K0, and 50cm or less for the U2KN30K0S, U2KX37K0S or larger.
- c) Use a shield cable for the inverter and motor wiring, and connect the screen to the inverter's ground terminal and motor grounding terminal.
- d) When both control circuit wiring and main circuit are wired in parallel, keep distance of 30cm or more, or pass each of the wiring through metal conduits. If the control circuit wiring and main circuit wiring intersect, make sure that they intersect at a right angle.

Note 8) Inverter output

- a) Do not insert a power factor improvement capacitor on the output side of the inverser.
- b) When inserting a magnetic contactor on the output side of the inverter, prepare sequence control circuit so that the magnetic contactor will open and close after the inverter cops.
- c) Connect only the motor to the inverter output. Do not connect through transformer etc.

Note 9) Grounding

Always wire the inverter's ground terminal. The ground must be according to the regulations of the Country where the inverter is being used .

Note 10) Inverter output surge voltage (For 400V Series)

The surge voltage applied on the motor side increases depending to output cable length, If this wiring between motor and drive exceeds in 30mts, connect a ungo absorber exclusive for the inverter output.

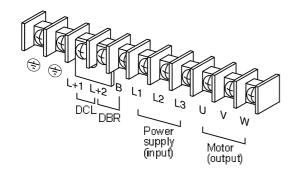
Note 11) DCL

Always short circuit across L+1 and L+2 when not using the DCL. (Factory setting state) When connecting the optional DCL, connect it to L+1 and L+2. Twist the wiring to the DCL, and keep the van. a length to 5m or less.

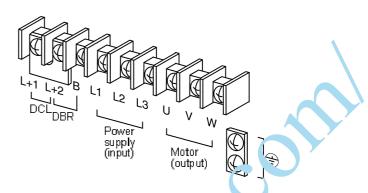
Note 12) DB unit

When connecting the optional DB un t, follow rig. 2-4 (2) and connect the L+2 and L- for 011L, 011H and larger.

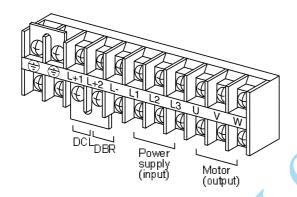
The DB unit and inverter unit will both be damaged if the connection is incorrect. Twist the wiring to the DBR rait, and keep the wiring length to 3m or less. Refer to Section 7-4 for details.

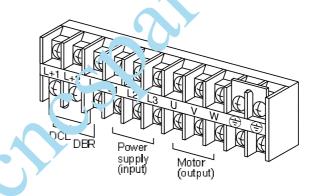

Note 13) DB protection

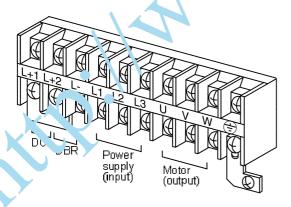
When using the option CDB unit, use the DB's overload detection relay or insert a thermal relay (76D) to protect the DFR resistor and inverter. Prepare a sequence control circuit to turn OFF the magnetic contactor (MC) on the input side of the inverter or trip the wiring breaker (MCCB) with trip coil using the contact of the DBR unit's overload detection relay or it's thermal relay (76D).

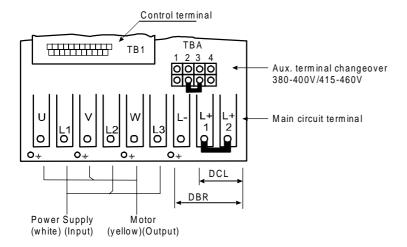

Note 14) Contactor's ils

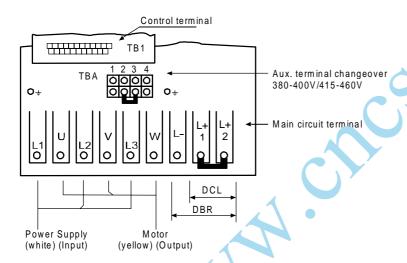
Install a surge absorber on the magnetic contactor or relay coils installed near the inverter.


(a) U2KN00K4S - U2KN04K0S U2KX00K4S - U2KX04K0S

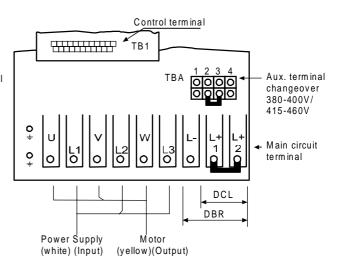

(b) U2KN05K5S - U2KN07K5S U2KX05K5S - U2KX07K5S


(c) U2KN11K0S - U2KN15K0S U2KX11K0S - U2KX18K0S

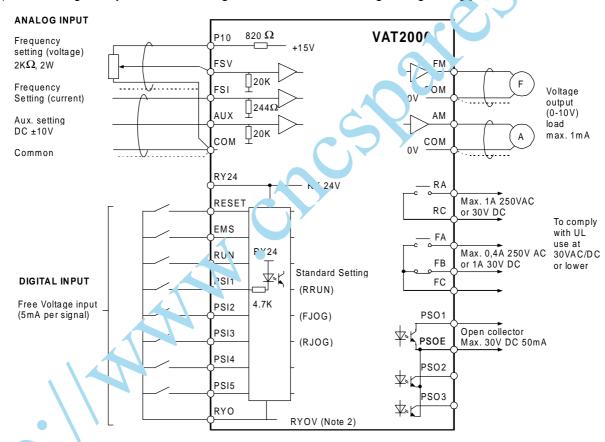

(d) U2KX22K0S


(e) U2KN18K5S - U2KN37K0S U2KX30K0S - U2KX45K

(f) U2KX55K0S, U2KX75K0S, U2KX90K0S, U2KX110KS


(g) U2KX132KS, U2KX160KS

(h) U2KX200KS


TBA 1 2 3 5 Chro. terminal Changeover 380-400V/415-460V Aux. terminal changeover 380-400V/415-460V Main circuit terminal Power Supply Motor (white) (Input) (yellow) (Output)

(i) U2KX250KS, U2KX300KS

2-4 Precautions for Wiring to the Control Signal

- 1) Separate the main circuit wiring (to terminals L1, L2, L3, L+1, L+2, L-, B, U, V, W) from the other drive wires and power wires.
- 2) Use a 0.25 to 0.75mm² wire for wiring to the control circuit. The tightening torque must be 0.6Nm.
- 3) Use a twisted pair wire or twisted pair shield wire for wiring the analog signals (as the setters and meter). (Fig. 2-6.) Connect the shield wire to the TB2 COM terminal of the VAT2000. The wire length must be 30m or less.
- 4) The analog output is dedicated for metering only, such as the speed-meter and ammeter. It cannot be used for control signals such as the feedback control.
- 5) The length of the sequence input/output contact wire must be 50m or less.
- 6) The sequence input (digital I/Os), can be selected either sink logic or source logic method by the short pin (W1). Refer to Table 5-2.
- 7) Observe the precautions listed in "Table 5-2 Control input/output circuit".
- 8) An example of the control circuit wiring is given in Fig. 2-6.
- 9) The layout of the control circuit terminal block is shown in Fig. 2-7; functions are in Tab. 5-/. Terminals with the same terminal symbol are internally connected.
- 10) After wiring, always check the wiring. Do not test control wirings using a megget a sizer

(Notes)

- 1. Three COM terminals are internally connected.
- 2. No connection shall be made between RY0 and COM since this section is insulated.
- 3. This diagram is an example of the sink logic connection. (Refer to Table 5-2.)

Fig. 2-6

• Control terminal (The terminal block is laid out in two rows.)

	TB1															,		ТВ	32							
	RY	/24	RES	SET	PSI ²	l PS	SI2	PS	14 PS	601	PS	OE	Р	10	CC	M	AU	ΙX	A۱	Л	FM	R	C	F	4	
1 (<u> </u>	Rl	JN	E۱	ИS	RY0	PS	SI3	PSI5	PS	02	PSC)3	FS	SV	F	SI	CC	M	COM		RA	F	C	F	В
2 ())											F	ig.	2-7	•											

W1

Chapter 3 Test Operation and Adjustment

DANGER

- Always install the front cover before turning the input power ON. Never remove the cover while the
 power is ON. There are sections in the front PCB that are charged with high voltages.
 Failure to observe this could lead to electrical shocks.
- Never touch the switches with wet hands.
 - Failure to observe this could lead to electrical shocks.
- Never touch the inverter's terminals while the inverter power is ON even if the operation is stopped.
 Failure to observe this could lead to electrical shocks.
- Selection of the retry function could lead to unexpected restarting when a fault occurs. The machine may start suddenly if the power is turned ON when the automatic start function is selected. Do not go near the machine.
 - (Design the machine so that physical safety can be ensured even if the machine restorts.) Failure to do so could lead to injuries.
- The machine may not stop when a stop command is issued if the deceleral. In stop function is selected and the overvoltage / overcurrent limit function is activated. Prepare : set at the emergency stop switch.
 - Failure to do so could lead to injuries.
- Resetting of a fault while the run signal is input could lead to ... pec'ed restarting. Always confirm that the run signal is OFF before resetting the alarm.
 - Failure to do so could lead to injuries.

CAUTION

- The heat sink and resistor are heated to high temperatures, so never touch them. Failure to observe this could lead to times.
- Do not block the inverter's vertilaus holes.
 - Failure to observe this could lead to fires.
- The inverter operation can easily be set from low speeds to high speeds, so confirm that the operation is within the operable range for the motor or machine before making settings. Failure to do so could be do to injuries.
- Prepare I olding braks when necessary. Holding is not possible with the inverter's brake functions.
 Failure to do so could lead to injuries.
- Confirm the operation of the motor as a single unit before operating the machine.
 - Fai un to do so could lead to injuries or machine damage due to unforeseen movements.
 - All ays repare a safety backup device so that the machine is not placed in a hazardous situation then an error occurs in the inverter.
 - Failure to do so could lead to injuries or machine damage or fires.

The VAT2000 has several modes of control. Some of these include settings that must be made according to the power supply and motor constants before actually starting operation.

The method to set VAT2000 basic operation is explained in this section.

3-1 Control selection

The VAT2000 has five modes of control, which can be selected with the parameter (C30-0). Refer to Appendix 1 Control Specifications Table for details.

- (1) V/f control (constant torque) (C30-0 = 1) : **(Note 1)** V/f control (voltage frequency control in constant ratio)
- (2) V/f control (variable torque) (C30-0 = 2): (Note 1)

 V/f control (voltage-frequency control in quadratic ratio respect to a variable torque load, such as a fan or pump)
- (3) Speed sensor-less vector control for standard Induction Motors (C30-0 = 3) Speed or torque vector control of the IM is achieved without sensor
- (4) Speed sensor vector control for standard Induction Motors (C30-0 = 4). (Note 2) Speed or torque vector control of the IM is achieved without sensor. This is used when a high speed accuracy or fast torque response is required.
- (5) Permanent Magnet drive control (C30-5 = 5): (Note 3)

 Speed vector control for permanent magnet motors (brush-less type motors).

 The PM motors allow high-efficiency operation in respection to examine standard Induction Motors
- (Note 1) The operation panel only displays the parameters required for each type control. For example, when the V/f control is enabled (C30.0 1 or 2) the drive will not display the dedicated parameters for vector control
- (Note 2) An optional PCB (U2KV23DN1 or DN2) for M speed detection is necessary. (Table 7-1.)
 (Note 3) An optional PCB (U2KV23DN3) for PM speed detection is necessary. (Refer to Table 7-1.)

3-2 Selection of operation made

The VAT2000 operates in purity "Local" (from the operation panel) and "Remote" (from I/O terminals) modes. These modes can be changed with the LCL LED on the operation panel. Refer to Section 4-1 for details.

For Local Mode : LCL LED ON

Operation is carried out from the operation panel.

For Remote Mode : LCL LED OFF

Operation is carried out with the terminal block TB1 input terminals.

CAUTION

Make sure that there is no abnormal noise, smoke or odours at this time.

If any abnormality is found, turn the power OFF immediately.

3-3 Flow of Test Operation

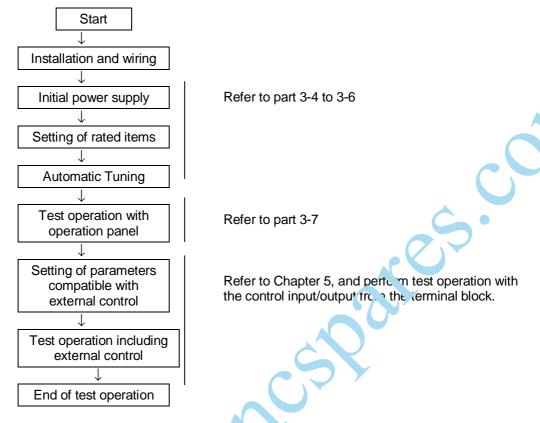


Fig. 3.1 Test operation procedure

CAUTION

- 1. Check that the wiring is connect.
- 2. The power supply must all "ys be kept in the tolerable range.
- 3. Always check that the inverter rating and motor rating match.
- 4. Always correct sins an the front cover before turning the power on.
- 5. Assign one worker to operate the switches, etc.
- 6. Refer to the Criapter 6 and observe the precautions when changing the set values such as torque boost A02-0.

3-4 Preparation for operation

Always confirm the following points before turning ON the power after completing wire.

- (1) Remove the coupling and belt coupling the motor and machine, so that the machine can be run as a single unit.
- (2) Confirm that the power supply wire is correctly wired to the input terminals (L1, L2, L3).
- (3) When using the 400V Series (X45K0S), confirm that the auxiliary power supply terminal (TBA) stright terminals to match the power supply voltage.

For 380 to 400V: Link between 2-3 (factory setting)

For 415 to 480V: Link between 1-2

- (4) Make sure that the power supply is within the tolerable range.
- (5) Make sure that motor is connected with the correct phase order.
- (6) Fix the motor with the specified method.
- (7) Make sure that none of the terminal board screws are loose.
- (8) Make sure that there is no short circuit state in the terminals caused by vire scraps, etc.
- (9) Always correctly install the front cover and outer cover before turning to power ON.
- (10) Assign an operator, and make sure that the operator operators the switches.

3-5 Settings of data before operation

(1) Turn ON the MCCB, and then turn ON the interter lower. All LEDs will light momentarily on the indicator, and then

"----", "-| [[] - []" will display before displaying "----".

The "LCL" and "Hz" LED will also light.

(2) Refer to Section 4-5, and confirm the rating parameters.

3-6 Automatic tuning

Automatic tuning masures the constants of the connected motor, and automatically adjusts the parameters so that the system is used to their maximum performance.

VAT2000 automatic tuning can be carried out independently for each of the following types of control.

V/f control (constant torque) (C30-0 = 1)

V/f control (variable torque) (C30-0=2)

IM systemsor-less vector control (C30-0 = 3)

IM \sim ctor control with speed sensor (C30-0 = 4)

(N • 1) All parameters belong blocks "B" and "C" -like parameter C30-0- are not displayed as default. Check setting in parameter A05-2 prior set parameter C30-0

(Note 2) The PM motor control, does not have a specific Automatic tuning. Refer to 6-8 for details

3-6-1 V/f control (constant torque) (C30-0 = 1), V/f control (variable torque) (C30-0 = 2) automatic tuning

(1) Automatic tuning

The Auto-tuning for V/f control (constant torque) or V/f control (variable torque) can be performed in two modes, basic or extended. The mode selection is allowed by parameter (B19-0). (Note 1, 2)

1) B19-0 = 1: Mode 1: V/f control basic adjustment mode (Execution time: approx. 10 seconds).

The drive automatically adjusts basic parameters, such as boost voltage and brake voltage. In this phase the motor does not rotate.

The following parameters are automatically adjusted by executing Mode 1.

Table 3-6-1

Parameter No.	Name
A02-2	Manual torque boost setting
A03-0	DC brake voltage
B02-0, 1	R1: Primary resistance

2) B19-0 = 2: Mode 2: V/f control extended adjustment mode (Execution time. __prox. 1min.). Use this method if the motor is completely unloaded only. (No load at motor s. aft)

The drive automatically adjusts parameters related to the slip compensation and max. torque boost. In this phase the motor rotate.

The following parameters are automatically adjusted by exercing Mode 2.

Table 3-6-2

Parameter No.	Name
A02-2	Manual torque burst setting
A03-0	DC brake voltage
B02-0, 1	R1: Primary stance
A02-5	Slip compensation gain
A02-6	Max. to que boost gain

(Note 1) The automatic tuning function (B19-0) cannot be used in modes other than control selected with the parameter (C30-0). When C30-0 is set to 1 or 2, the following cannot be selected.

B19-0 = 3: Mode 3: Vector control basic adjustment mode
B15 = 4: Mode 4: Vector control extended adjustment mode

(Note ?) In the base frequency of the motor is applied on a motor exceeding 120Hz, select Mode 1 (B19-0 = 1). Adjust the slip compensation gain (A02-5) and max. torque boost gain (A02-6) manually.

CAUTION

Precautions for executing V/f control (constant torque) V/f control (variable torque) automatic tuning

- During automatic tuning, the motor may rotate, so always confirm safety before starting automatic tuning.
- Separate the motor from the load and machine, etc., and run the motor as a stand alone unit during automatic tuning.
- Even when Mode 1 is executed, the motor may rotate due to vibration, etc.
 If the vibration is large, turn the (STOP) key immediately to stop operation.
- Always check the safety on the load side before executing automatic tuning, regardless of the Mode 1 or 2 setting.
 - With Mode 2, the motor will automatically start rotating.
- If the automatic tuning function does not end correctly, always turn the inverter power OFF before investigating or confirming the operation.
- Automatic tuning can be carried out only in the Local Mode.
- If the motor has an unstable frequency band, automatic tuning may not prormally. In this case, the maximum torque boost function cannot be used.
- Always ground the motor and inverter.
- If the load is less than 30% and the fluctuation does not occur, act to notic tuning can be carried out with the load and machine connected. However, the performance may not be complete.
- Always carry out automatic tuning before using the ... axii torque boost function.
- The contact output FLT will function if the automach turning does not end correctly. In equipment that uses this contact, keep the operation of the related opvices in mind.

(2) Automatic tuning operation procedures

The automatic tuning is carried out according the following procedure.

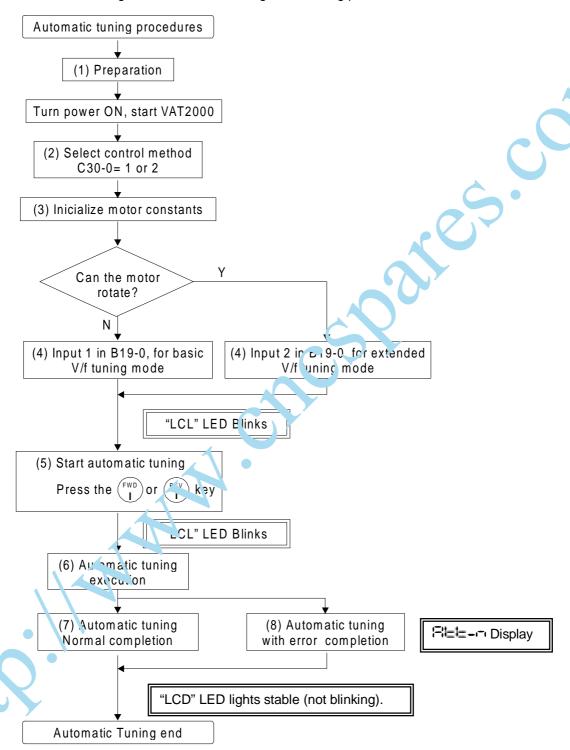


Fig. 3-2 Auto-tuning procedure for V/f control (Constant Torque and Variable Torque)

1) Preparation

Separate the motor and load, machine, etc., and confirm the safety on the load side.

2) Selection of control method

- Set A05-2 to 1. (enables parameter display)
- By parameter (C30-0), select V/f control according the load conditions

V/f control (constant torque) (C30-0 = 1) (Default value)

V/f control (variable torque) (C30-0 = 2)

3) Initialisation of motor constants

Input the motor rating nameplate value parameters. Automatic tuning will automatically change the parameters shown in table 3-6-1 or table 3-6-2.

Table 3-6-3

Parameter No.	Name	
B00-0	Rated input voltage setting	[V]
B00-1	Max/base frequency simple setting	[Hz]
B00-2	Motor rated output	[kW]
B00-3	Rated output voltage	[V]
B00-4	Max. frequency	[Hz]
B00-5	Base frequency	[Hz¹
B00-6	Motor rated current	ΪΔΊ
B00-7	Carrier frequency	[k,]

^{*} The max. frequency cannot be set below the base frequency cannot be set above the max. frequency.

4) Selection of automatic tuning function

- Set A05-0 to 1. (enables parameter display)
- By parameter (B19-0), select the automatic tuning node according working conditions. Refer to section 3-6-1 for details.
- The automatic tuning will star when (i) SET key is pressed.
- During the automatic tuning state, the LCL LED will blink.
- To abort the automatic tuning press the (STOP) key

5) Starting automatic tuning

Automatic tuning will start when either the wear equired rotation director. A message indicating starting will appear on the operation panel.

To stop, press the wear either the wear equired rotation director. A message indicating starting will appear on the operation panel.

To stop, press the wear equired rotation in the terminal block.

* Key's cher han (STOP) and RST MOD are disabled during automatic tuning.

6) During automatic tuning execution

The progression state can be shown by parameter display D22-0. Refer to section 3-6-4 for details.

7) Normal completion of automatic tuning

The "LCL" LED will end blinking, lighting stable, and a message indicating the end will be splayed. Refer to section 3-6-1 for the adjustment details.

8) Abnormal completion of automatic tuning

If the automatic tuning ends abnormally, a error message will appear. Check according to the error codes. Refer to section 3-6-3 for details.

3-6-2 IM speed sensor-less vector control (C30-0 = 3) and IM vector control with speed sensor (C30-0 = 4) automatic tuning

(1) Automatic tuning

The Auto-tuning for the IM speed sensor-less vector control or IM vector control with speed sensor can be performed in two modes, basic or extended. The mode selection is allowed by parameter (B19-0). (Note 1)

B19-0 = 3: Mode 3: Vector control basic adjustment mode (Execution time: approx. 30 seconds)
 The drive automatically adjusts basic parameters for vector control.
 The following parameters are automatically adjusted by executing Mode 3.

Table 3-6-4

Parameter No.	Name
B01-8	No-load output voltage
B02-0, 1	R1 : Primary resistance
B02-2, 3	R2 : Secondary resistance
B02-4, 5	Lσ : Leakage inductance
B02-6, 7	M': Excitation inductance

Table 3-6-5

Parameter No.	Name
B01-9	No-load output voltare
B02-0, 1	R1 : Primary res, tance
B02-2, 3	R2 : Secor dary resistance
B02-4, 5	Lσ : Leakag ductance
B02-6, 7	M': Excitation inductance
B34-0 to 7	M vai ble compensation table

(Note 1) The automatic tuning function (B19-0) cannot be used in modes other than control selected with the paramete. (C30-0). When C30-0 is set to 3 or 4, the following cannot be selected.

B19-0 = 1: Moue 1: V/f control basic adjustment mode B19-0 = 2: Mode 2: V/f control extended adjustment mode

(Note 2) V hen the motor works under constant power operation, the excitation inductance fluctuation must be compensated.

Assign the operation range to the reference speed table in B33-0 to 7.

Note that the motor will rotate to the max. speed in this case, so take special care to safety.

B 9-0 = 5: Mode 5: Vector control adjustment mode when load exceed of 10%

When the load is higher than 10% or there are fluctuations, is possible to perform Autotuning following procedure shown below,

- 1 Adjust manually motor equivalent data parameters B02-0 to 9. R1: primary resistance, R2': Secondary resistance, Lσ: Leakage inductance, M': Excitation inductance.
- 2 Execute Autotuning procedure shown in page 3-11, but entering 5 in parameter B19-0.

Autotuning adjust the no load voltage parameter, improving Vector performance from manual adjustment

CAUTION

Precautions for executing IM speed sensor-less vector control or IM vector control with speed sensor automatic tuning

- During automatic tuning, the motor may rotate, so always confirm safety before starting automatic tuning.
- Separate the motor from the load and machine, etc., and run the motor as a stand alone unit during automatic tuning.
- The motor may vibrate and rotate during automatic tuning.
 If the vibration is large, turn the (STOP) key immediately to stop operation.
- Always check the safety on the load side before executing automatic tuning. The motor will automatically start rotating during automatic tuning.
- If the automatic tuning function does not end correctly, always turn the inverter power F pefore investigating or confirming the operation.
- Automatic tuning can be carried out only in the Local Mode.
- · Always ground the motor and inverter.
- If the load is less than 10% and the fluctuation does not occur, automatic a ring can be carried out with the load and machine connected. However, the performance may no be complete.
- If the load is higher than 10% or the fluctuation occur, automatic uning can be carried out entering motor data manually and setting B19-0=5. Chek section 3-6
- The contact output FLT will function if the automatic turing does not end correctly. In equipment that uses this contact, keep the operation of the related coviders in mind.

(2) Automatic tuning operation procedures

The automatic tuning is carried out according the following procedure.

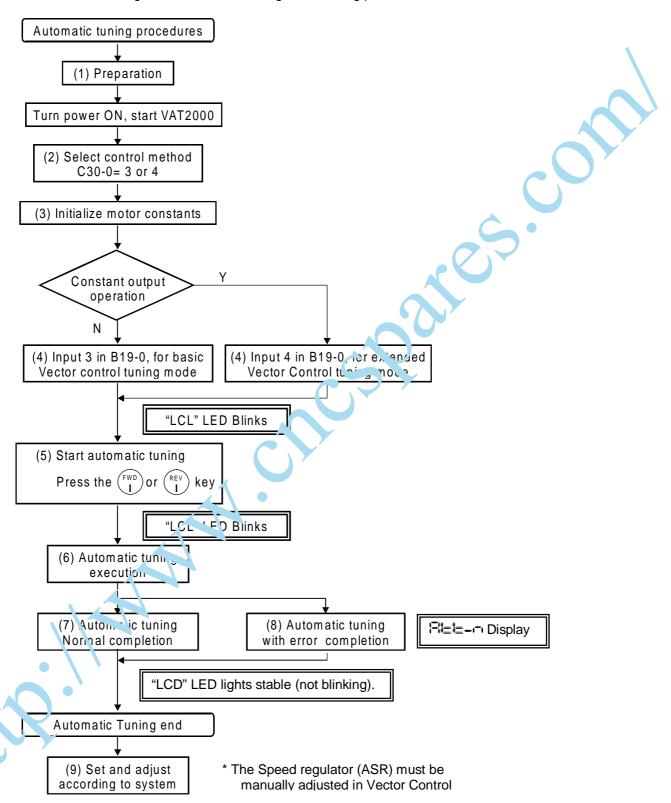


Fig. 3-3 Automatic tuning procedures for sensor or sensorless vector control (for Induction motors)

1) Preparation

Separate the motor and load, machine, etc., and confirm the safety on the load side.

2) Selection of control method

- Set A05-2 to 1. (enables parameter display)
- By parameter (C30-0), select V/f control according the load conditions

IM speed sensor-less vector control (C30-0 = 3), (Default value) IM vector control with speed sensor (C30-0 = 4)

* The default value is V/f control (constant torque) (C30-0 = 1).

3) Initialisation of motor constants

Input the motor rating nameplate value parameters. Automatic tuning will automatically change the parameters, so it is recommended to write down the values set in table 3-6-4 or table 3-6-5.

Name Parameter No. B01-0 Rated input voltage setting [V] B01-1 [kW] Motor rated output B01-2 No. of motor poles [Po. 1 B01-3 Rated output voltage LV. B01-4 ['nir-1] Max. speed B01-5 Base speed $[m_1 n_{-1}]$ B01-6 Motor rated current [A] B01-7 Carrier frequency [kHz] : (Note 1)

Table 3-6-6

[P/R] : (Note 2)

Assign the operation range to the table reprence speed in B33-0 to 7.

No. of encoder pulses

Note that the motor will rotate to the main speed in this case, so take special care to safety.

(Note 1) During IM speed sense-less vector control (C30-0 = 3), it is recommended to set the carrier frequer by to 10KHz to improve the current detection accuracy.

(Note 2) Always enter encourse pulse numbers when using the speed sensor.

4) Selection of automatic tuning function

B01-8

- Set ACC 1 to 1. (enables parameter display)
- L'y paramete. (B19-0), select the automatic tuning mode according working conditions. Refer to section 3-6-2 for details.
- The automatic tuning will star when the SET key is pressed.

 During the automatic tuning state, the LCL LED will blink.
- To abort the automatic tuning standby state, press the (STOP) key.

^{*} When the motor works under constant po 'er operation, the excitation inductance fluctuation must be compensated.

^{*} The max. speed cannot be set below the base speed, and the base speed cannot be set above the max. speed.

5) Starting automatic tuning

Automatic tuning will start when the $\binom{\text{FWD}}{I}$ key or $\binom{\text{REV}}{I}$ key is pressed according to the required rotation direction. A message indicating starting will appear on the operation panel.

To stop, press the $\binom{\text{STOP}}{O}$ key or input the emergency stop signal (EMS) from the terminal block.

* Keys other than (STOP) and (RST) are disabled during automatic tuning.

6) During automatic tuning execution

The progression state can be confirmed with D22-0. Refer to section 3-6-4 for details.

7) Normal completion of automatic tuning

The "LCL" LED will end blinking, lighting stable, and a message indicating the end displayed. Refer to section 3-6-2 for the adjustment items.

8) Abnormal completion of automatic tuning

If the automatic tuning ends abnormally, a message will appear. In capacitate and check according to the error codes. Refer to section 3-6-3 for details on the error codes.

9) Additional settings and adjustments

There are some parameter related to load condition or required response control which should be adjusted manually. The main parameters are shown below

• A10-0: ASR response : Set the spect control response in [rad/s] unit.

If the spee 1 tracking is slow, increase this value.

Note that if him alue is too high, hunting may occur.

A10-1: Machine time constant 1: Set be time required to accelerate from zero to the base

sped ith the rated torque.

Tm [msec] = $10.968 \times J [kgm^2] \times N be se [rpm]/Power [W]$

J : Total inertia [kgm²] N base : Basc speed [rpm]

• A10-2: Integral time constant compensation coefficient:

Increase the compensation coefficient if the overshooting is high during speed control.

• A10-3: AS 2 drive torque limit : Increase if a higher drive torque is required.

• A10-4: ASR regenerative torque limit : Increase if a higher regenerative torque is

required.

9) Adjustment for Induction Motor, sensorless vector control

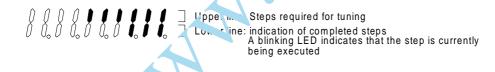
Adjust the following items, to improve accuracy

Fine adjustment of primary resistance

With motor unloaded, run the motor at the minimum speed to be used, and finely adjust the primary resistance (B02-0,1). For Forward run, adjust so that D11-4 (ASR output) is near zero on the positive side. (Note that B02-0 can be set during run but B02-1 can not) Make sure that the D11-4 does not reach the negative side during forward run.

· Adjustment of estimated speed integral gain

Confirm that D00-3 (motor speed on % units) is stable (±1% or less) during trial operation. If not decrease (approx. half) the speed estimated proportional gain (B31-1)


3-6-3 Automatic tuning error messages

If automatic tuning ends abnormally, the drive will display an error code, \(\begin{align*} \frac{1}{2} \frac{1}{2} \rightarrow \end{align*}\). The error codes "\(\begin{align*} \frac{1}{2} \rightarrow \end{align*}\) are defined in the below table.

Code	Cause and remedy
n=1	The motor may not be connected correctly.
	Check motor connections.
	2. The B00 or B01 parameters may not be set correctly
	Check the parameter setting.
n=2	The B00 or B01 parameters may not be set correctly
	Check the parameter setting
n=3	The motor may not be separated from the load. Separate the motor from the load.
	2. Increase the acceleration ramp time (A01-0)
	3. Decrease the acceleration ramp time (A01-1)
	4. If the motor vibrates, increase the torque stabilising gain (B18-2)
n=4	The motor may not be separated from the load.
	Separate the motor from the load
	2. If the motor vibrates, increase the torque stabilising gain (B18-2)
n=5	When the motor does not stop:
	1. Increase the acceleration/deceleration ramp time A01-0, \(\frac{1}{2}\)
	When the motor stops:
	1. The B00 or B01 parameters may not be set correcu,
	Check the parameter setting.
n=6	The B00 or B01 parameters may not be set prrectly
	Check the parameter setting.

3-6-4 Automatic tuning progression state disk ay

Details on the progression state of automatic tuning can be confirmed with the monitor parameter: D22-0 display.

3-7 Test operation with operation panel

The test operation with the operation panel is performed with the following procedure.

CAUTION

Make sure that input signals to digital Inputs, RUN, EMS, PSI1 ~ 5 terminals are OFF

(1) Turn ON the power supply.

All LEDs will light momentarily on the display, and then "----", "-! [] [] - []" and "- [] F.".will be sequentially displayed.

The "LCL" and "Hz" LED will also light.

Set the parameter C02-0 to 3 (panel fixed); it will enable the speed setting from the operation panel. Refer to section 4-5 for details on changing the parameters.

CAUTION

The motor will run. Confirm the safety around the motor before start

(2) Press the $\binom{\widehat{FWD}}{I}$ key.

The "FDW" LED will light and the display will change from "5, 5 to "[7]. This is because the local setting frequency (A00-0) is set to 10Hz as the delegation.

CHFCK

- 1. Did the motor run?
- 2. Is the run direction correct? Check the wirir and operation if abnormal.
- 3. Is the rotation smooth?
 - (3) Press the $\binom{REV}{I}$ key and confine that the motor runs in reverse.
 - (4) Press the (STOP) key a. I stop the motor.
 - (5) Press the (FW) key. The motor will forward run at 10Hz.
 - (6) Press the RIT key once. The display will alternate between "FI [] [] []" and "| [] [] []".
 - (7) Press the SET key once.

The display will stop at "| [], [] []", and the last digit will blink. Now the value set in parameter A00-0 may be changed.

The digit to change can be selected with the key. The output frequency (digit value) can be increased / decreased with the knob.

(8) Move the digit with the key, and using the knob, raise the frequency to 50Hz. Then, press the set will rise to 50Hz. Then, press the set will rise to 50Hz.

CAUTION

A 10-second acceleration and 20-second deceleration ramp time are set as defaults. The motor will slowly increase its speed to the set value. Increase the speed by approx. 10Hz steps at a time with the knob.

- (9) Press the O key when the motor speed reaches 50Hz. The display will decrease to 0.00 in 20 seconds. The "FWD" or "REV" LED will blink for two seconds while the DC-brake is a and the motor will stop.
- (10) Press the $\binom{REV}{I}$ key to test the reverse run.

This completes the test operation with the operation panel.

Refer to Chapter 4 and make the adjustments according to the user application.

Chapter 4 Operation Panel

4-1 Details of operation panel

The configuration of the operation panel is shown in Fig. 4-1.

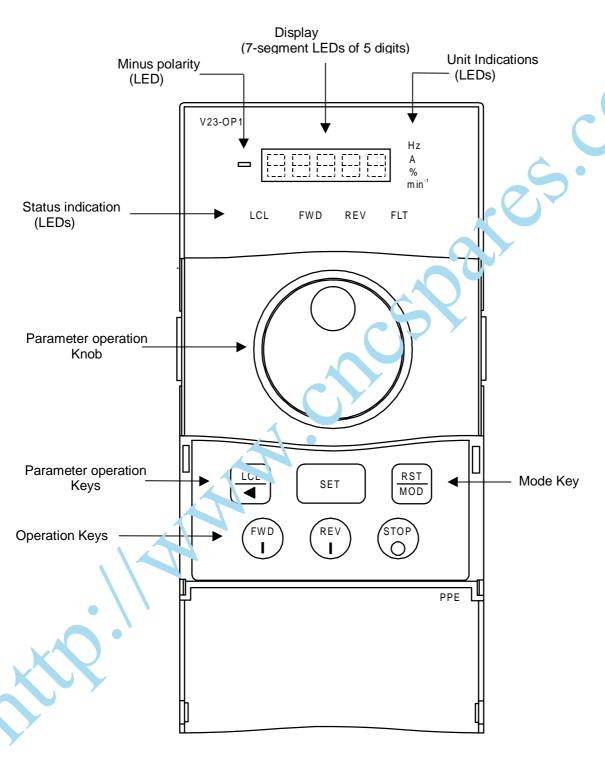


Fig. 4-1

The functions of each section are shown in Table 4-1.

Table 4-1 Functions of operation panel

Sta	tus indications l	LEDs				
		The drive forward d	is running in the irection.	When both LED's blink simultaneously, it indicates that DC Brake or pre-excitation is in action. If only the "FWD" or "REV" LED blinks, this indicates that a		
	REV (Reverse)	The drive reverse d		command in the reverse direction has been received, and the drive is decelerating.		
	FLT (Fault)	The drive has detected a fault and has stopped. The drive can be reset from the Operation Panel (STOP + RST/MOD) or from the terminal block (RESET signal)				
	LCL (Local)	REV and be control	STOP only). When lled from the termin	de and can be operated from the Operation Panel (F VD, n "LCL" LED is off, the drive is in the Remote Mode and can hal block (sequence input signals). To change I 'oder		
		between l	Local and Remote,	press (STOP) + LCL .		
Uni	t indication LED)s				
	HzA%min ⁻¹	Indicates	the unit of the para	ameter value shown on the display.		
Min	us polarity indi	cation LE	D			
		Lights for	negative numbers	<u>. </u>		
Ope	eration keys					
	(FWD)	Starts the	drive in the forwar	d direction. (in Low Your only)		
	REV	Starts the	drive in the revers	e direction. (in Local Mode only)		
	STOP	Stops the on C00-1.		wiii either coast to a stop or ramp down to a stop as selected		
	STOP + LCL		control Modes from CL" LED is on. (No	n Local to Remote, or vice-versa. When the drive is in Local		
	(STOP) + (RST) (MOD)	Resets a	fault, F.T LED cha	inges to OFF.		
Par	ameter operatio	n keys P	ara er operatio	on knob		
	(Mode)	/ - \		uentially in the following order. ameter-B, Parameter-C, Utility mode-U		
	SET	Parameter number or set its values.				
		Increases Parameter Block. Increases Parameter Number or its values.				
			s Parameter Block s Parameter Numb			
		Param. Select Changes Parameter Block for the desired Parameter. To change to the next Block down, turn first. For the next Block down, turn first.				
,		Value change	Moves the cursor the cursor is on the	to the desired digit for adjustment. ne blinking digit.		

(Note) As default the drive is set so that a Local/Remote selection is disabled while the drive is running. Even while the drive is at a stop, changeover cannot be made if operating commands such as RUN, JOG, etc., are ON at the terminal board. This lock can be released by parameter C09-2.

4-2 Modes and parameters

The parameters to be used differ depending of the control mode (C30-0). The parameters included are for the V/f control (constant torque and variable torque), IM vector control (sensor-less and with sensor for induction motors) and PM vector control (for PM motors).

These parameters are grouped into Modes and Blocks according to their functions and frequency of usage.

4-2-1 V/f control (constant torque) and V/f control (variable torque)

The configuration of the parameters is shown in Fig. 4-2.

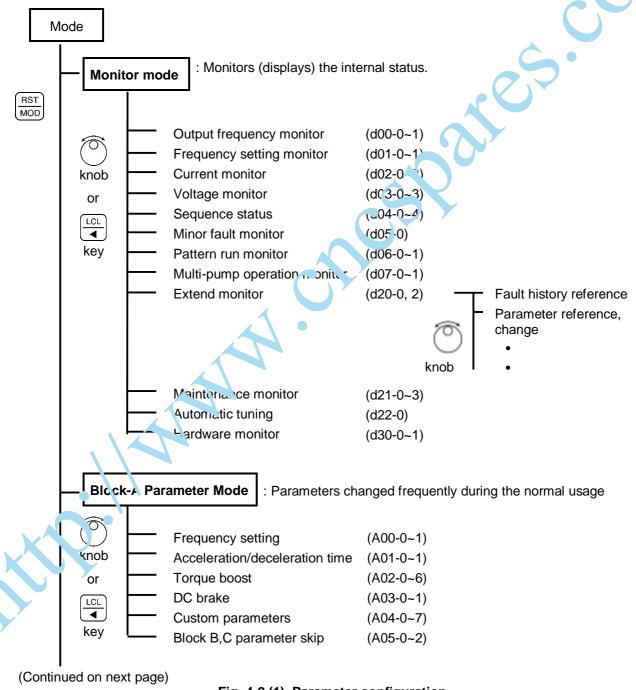


Fig. 4-2 (1) Parameter configuration

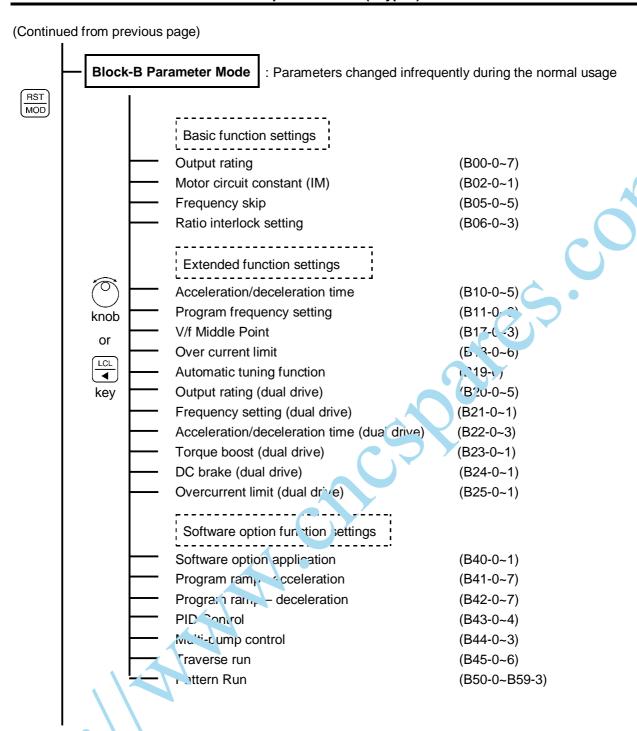
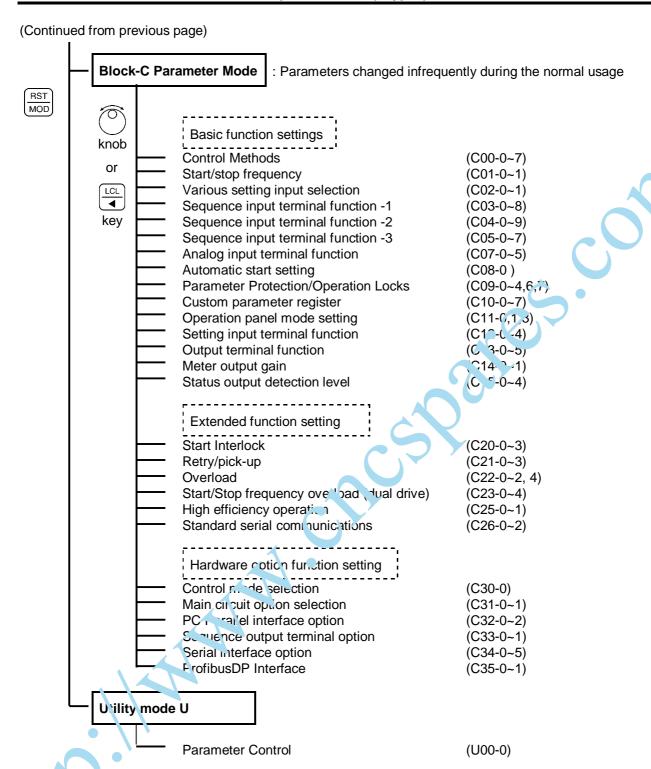



Fig. 4-2 (2) Parameter configuration

(Continued on next page)

At the default setting, only the basic functions are displayed, but the extended function, software option function, hardware option function parameters are skipped.

Thus, to display these parameters, change parameter A05-0 to 3 (parameter B, C block skip)

Fig. 4-2 (3) Parameter configuration

setting), so that the target parameters are displayed.

4-2-2 Speed sensorless vector control, and vector control with speed sensor (IM)

The configuration of the parameters is shown in Fig. 4-3.

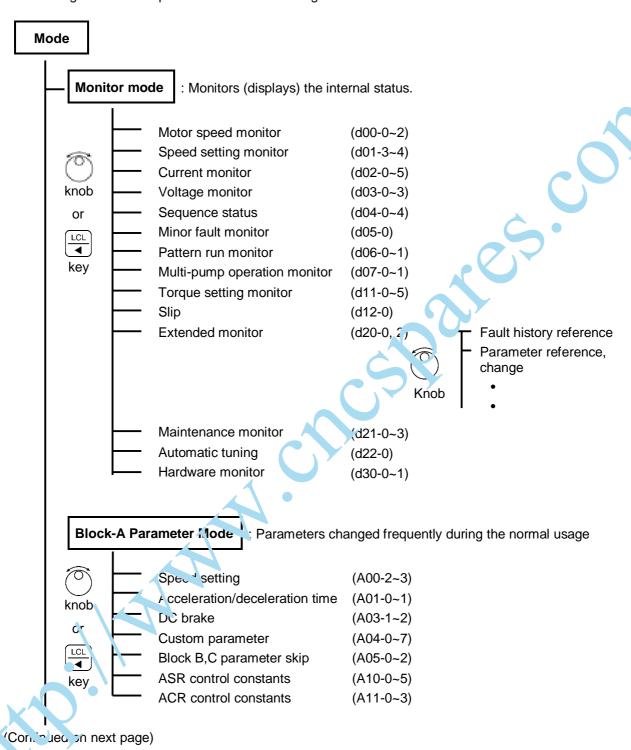


Fig. 4-3 (1) Parameter configuration

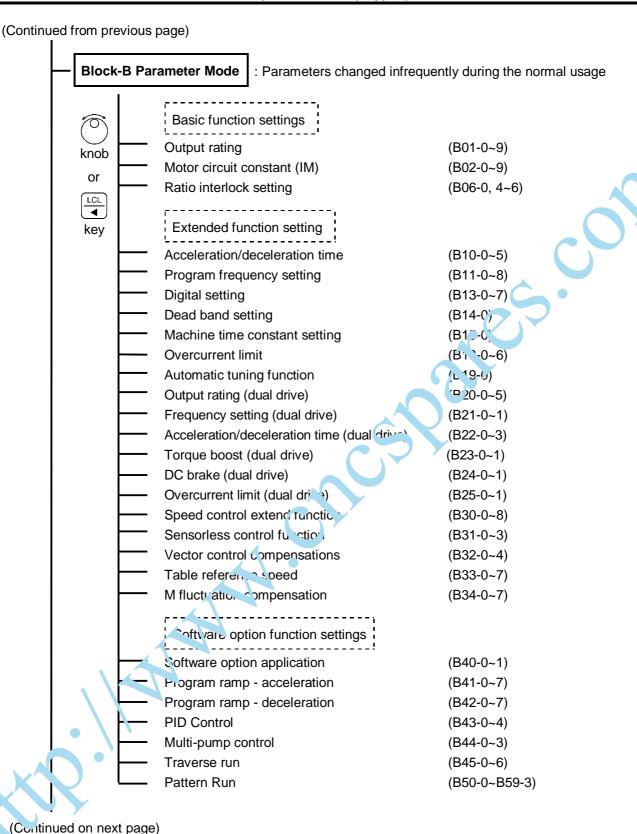
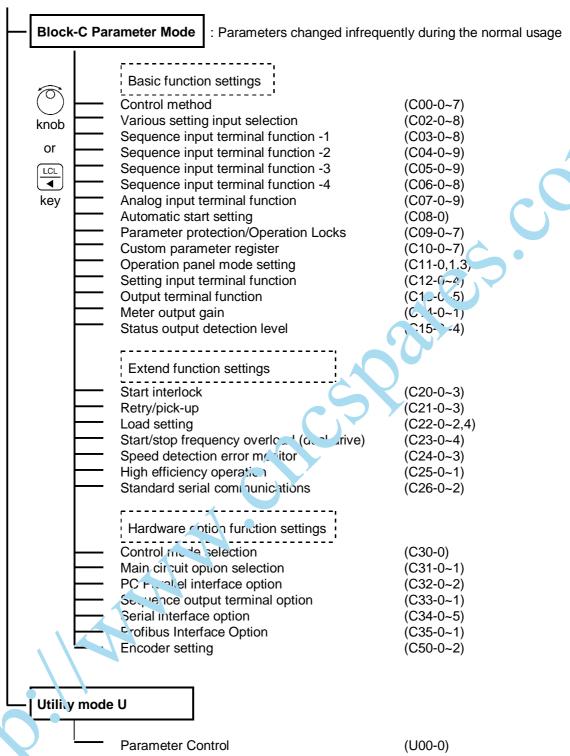



Fig. 4-3 (2) Parameter configuration

(Continued from previous page)

(Note) At the default setting, only the basic functions are displayed. The extended function, software option function, hardware option function parameters are skipped.

Thus, to change these parameters, change parameter A05-0 to 3 (parameter B, C block skip)

Fig. 4-3 (3) Parameter configuration

setting), so that the target parameters are displayed.

4-2-3 PM Motor control mode

The configuration of the parameters is shown in Fig. 4-4.

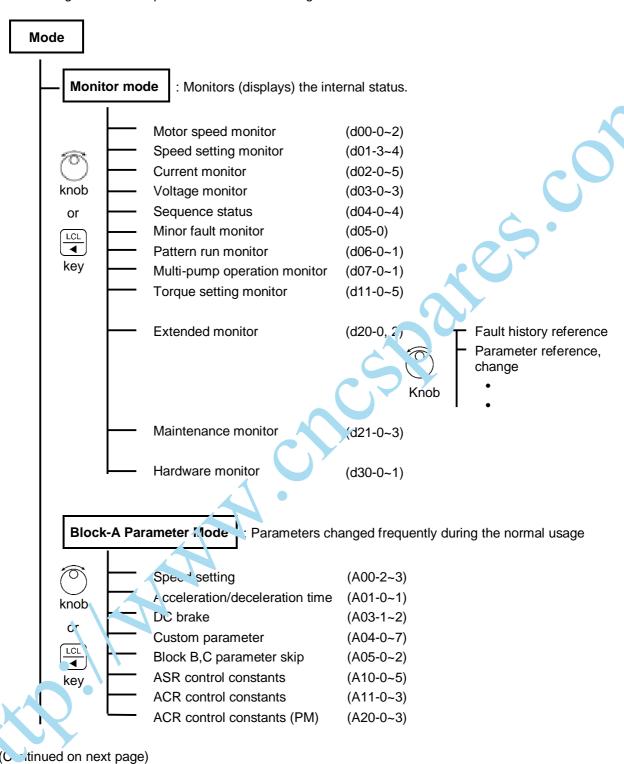


Fig. 4-4 (1) Parameter configuration

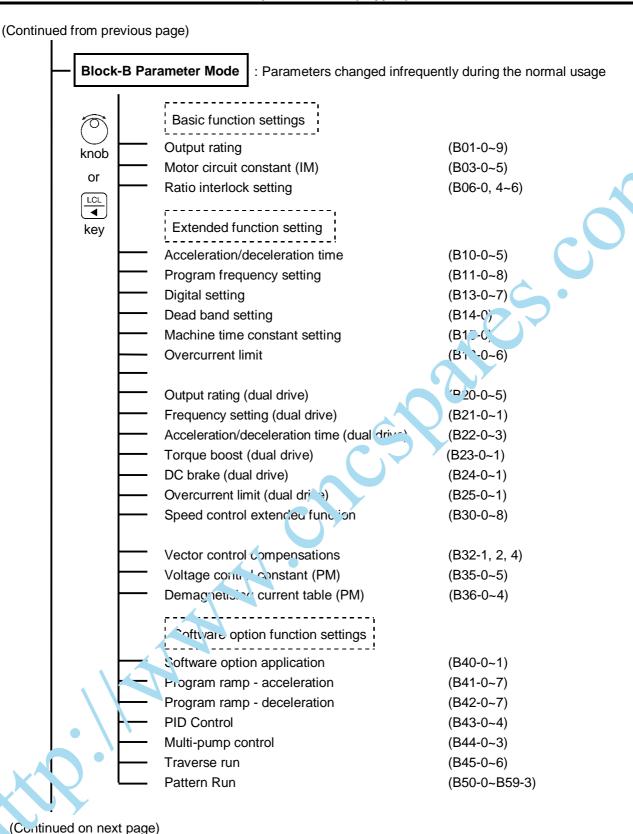
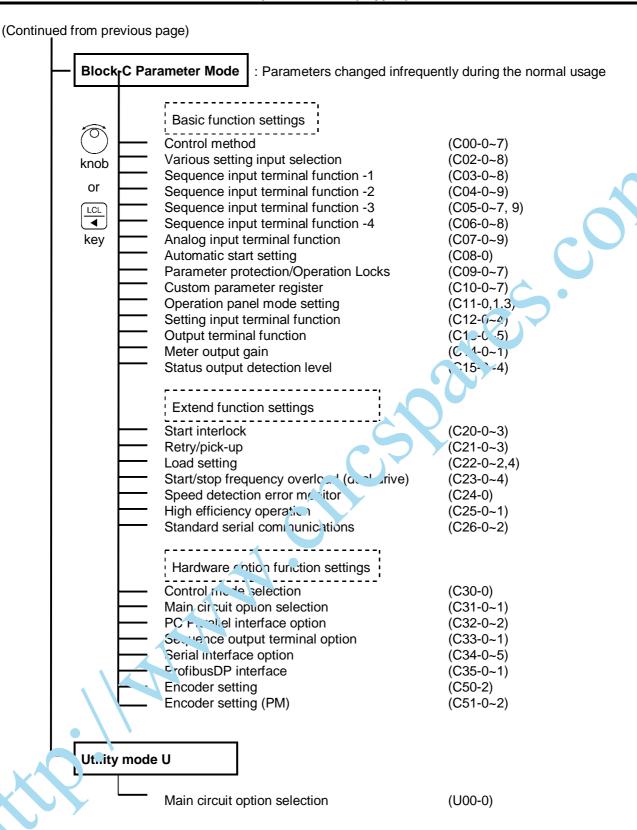



Fig. 4-4 (2) Parameter configuration

(Note) At the default setting, only the basic functions are displayed. The extended function, software option function, hardware option function parameters are skipped.

Thus, to change these parameters, change parameter A05-0 to 3 (parameter B, C block skip)

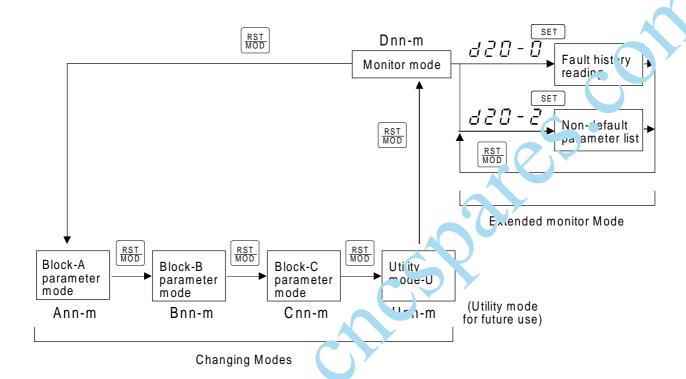
setting), so that the target parameters are displayed.

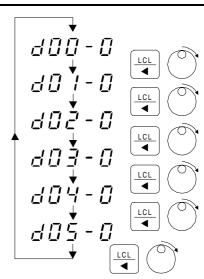
Fig. 4-4 (3) Parameter configuration

4-3 Changing modes (block parameters)

There are five modes of display on the operation panel. The mode (or block) displayed will change each time when the $\frac{RST}{MOD}$ key is pressed.

The monitor mode parameters , $-\frac{1}{2}$, $-\frac{1}{2}$, are the entries into the Extended Monitor Mode.




Fig. 4-4 Farameter mode changeover

4-4 Reading parameters in monitor mode

- 1) Refer to section 6.1 for the Parameters that can be read in Monitor Mode. Note this is for the case of V/f control (default setting C30-0=1).
- The following is an example for reading the output current as a percentage and then showing the output frequency as Hz.

Keys	Display	Explanation
(1)	50.00 •Hz	□□□ - □ : Output frequency
(2) LCL	d0 /-0	Parameter block changes to d01 block.
(3) LCL	d 0 2' - D	Parameter block changes to d0_ slock.
(4)	d02-1	Parameter number increuses.
(5)	<u> </u>	After one second, he display will show the output current as a percentage.
(6)	d02-0	Par meter number decreases.
(7) LCL	d02-1	Parameter block number decreases.
(8) <u>LCL</u>	dOD-D	Parameter block number decreases again.
(9)	5 <i>15.2 </i>	After one second, the display will show the output frequency as Hz.

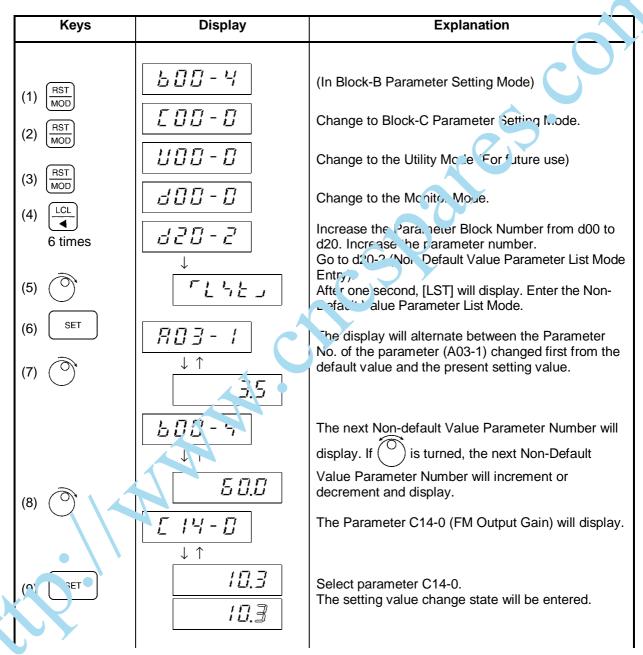
- 4) Press s.T to show the Parameter Number on the display while monitoring.
- 5) repeatedly to return to [] [[from (5) as sown in the right sequence.

4-5 Reading and adjusting block-A & B & C parameters

- 1) Refer to Sections 6-2 to 6-5, for the details of the Block-A, B and C parameters.
- 2) The below shown example is valid if the V/f control (constant torque) is enabled, (C30-0=1).

This example is for changing "maximum output frequency (Fmax) ([-, [-, -],]" in Block-B parameters, and then for changing "DC Breaking Time ([-, -],]" in Block-A parameters

Keys	Display	Explanation				
Change the Parame	Change the Parameter: B00-4 (maximum output frequency (Fmax) from 50.0 (default value) tc 60.0					
(1) RST MOD (2) RST MOD (3)	50.00 A00-0 B00-0 B00-4 ↓↑	(In Monitor Mode) Changes to the Block-A Parameter setting Mode. Changes to the Block B Parameter setting Mode. Increase the parameter No. from parameter B00-0 to B00-4.				
(4) SET (Note 2) (5) LCL 2 times	5 D.D 5 D.D 5 D.D	The display will alternate between Parameter Number B00-4 and the present setting value 50.0. Enclose the value to be changed. The preset setting value will display. Press LCL two times to move the flicker to the digit that is to be changed. (Note: Parameter B00-4 cannot be changed while the inverter is running.)				
(6)	B B B B	Change the flicker digit from 5 to 6.				
(7) SET	► B B B - Y ↓ ↑ B B.B	Fix the data. The change of Parameter B00-4 to 60.0 will be completed. The display will alternate between the Parameter Number B00-4 and the present value. (Parameter Number Changing Mode.)				


Keys	Display	Explanation
Change the parame	eter A03-1 (DC Breaking Time	rom 2.0 (default value) to 3.5.
(8) RST	<i>৳00-</i>	(In Block-B Parameter Setting Mode)
$(9) \frac{\text{MOD}}{\text{MOD}}$		Changes to the Block-C Parameter Setting Mode.
(10) (RST MOD)	<u> </u>	Changes to the Utility Mode. (For future use)
$(11) \frac{\text{RST}}{\text{MOD}}$	d 0 0 - 0	Changes to the Monitor Mode.
(12) LCL	FDD - D	Changes to the Block-A Parameter Setting Mode.
3 times (Note 1)	 	Increase the Parameter Block Number from A00 to A03.
(13)	↓ ↑	The display will the pale between Parameter Number A01 1 and the present value 2.0.
(14) SET (Note 2) (15) LCL	2.B 2.B	Enable the value to be changed. The present setting value will display. Place once to move the flicker to the digit that to be changed.
(16)	3.0	Change the flicker digit from 2 to 3.
(17) LCL 4 2 times	7.1	Move the flickering digit to the digit to be changed Change the flicker digit from 0 to 5.
(18)	3.5	Fix the data. Changing of parameter A03-1 to 3.5 will be
(19) (557)	HD3- /	completed. The display will alternate between the Parameter
	3.5	Number A03-1 and the present value. (Parameter Number Changing Mode.)

Nc '9 1) 'When the Block Number is changed by it will change to the next Block Number either up or down according to turned immediately before.

(Note 2) If - (RUN) displays while the parameter is being set in (4) and (14), the parameter is one of those that can only be changed while the inverter is stopped. In this case, stop the motor first, and then press SET again.

4-6 Reading the changed parameters (Non-default value parameter list)

- 1) The Monitor Parameter d20-2 is the entry into the Block-A, B and C Non-Default Value Parameter Listing Mode.
- 2) In this Non-Default Value Parameter Listing Mode, the display will show the Block-A, B and C Parameters that have different values from their default values. These Parameter values can also be read and changed in this mode.
- 3) The below shown example is valid if the V/f control (constant torque) is enabled, (C30-0=1). This is an example for reading C14-0 (FM output gain) and changing its value.

(Continued on next page)

(Continued from previous page)

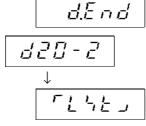
0.99

(11)

[14-[\downarrow \uparrow

E 15-2

(12)


0.99

(13)

100.0

d.E H D

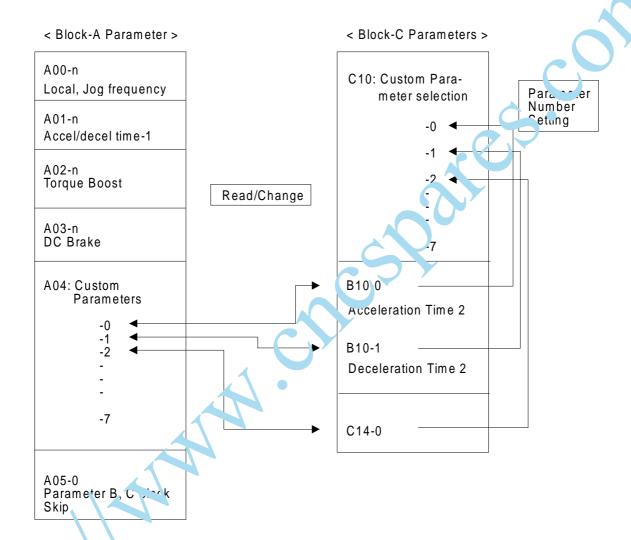
RST (14)

Change the setting value from 1.03 to 0.99.

This completes changing of the setting value.

The next Non-Default Parameter Number with display.

The display will altern between d. CHG and d.END to indicate the end of the Non-Default Value Parameter List.


is pre-sed after this, the Non-Default Value Parameter will display again from the first.

End the Non-Default Value Parameter List Mode. 1. 3 Monitor Parameter Selection status will be ente ed.

frer one second, [LST] will display.)

4-7 Customising block-B,C parameter

- 1) Block-B, C parameters can be assigned to any Block-A Parameter in the range of A04-0 to A04-7, and can be read and changed in the Block-A Parameter Setting Mode.
- 2) To use this function, set parameter No. to be displayed in A04-0 to 7 in parameter C10-0 to 7.
- 3) The below shown example is valid if the V/f control (constant torque) is enabled, (C30-0=1).

4) The following is an example for changing the value of a Custom Parameter.

Keys	Display	Explanation				
Register parameter	Register parameter B10-0 on Parameter C10-0 (Custom Setting).					
(1) RST LCL MOD	<i>E 18 - B</i> ↓ ↑ <i>I.9 9.9</i>	(Mode and Parameter Number Change to C10-0) The display shows Parameter C10-0. The value 1.99.9 indicates that no Parameter has been registered on Parameter C10-0.				
(2) SET	1.9 9.9	Select Parameter Number C10-0.				
(3)	1.9 9.0	Set the sub-number of B10-0 to "0".				
(4) <u>LCL</u> ◀	1.99.0	Each time LCL is pressed, the flickering digit will move to the digit to be changed.				
(5)	1. 18.D	Turn the knob ke until high-order digit reaches the block inc. 10.				
(6) SET		Selection of the אין ביום selection of the s				
	↓ ↑ [. / [],[]	Note) For para hater C, set as 2.xx.x.				
Change parameter	B10-0 which has been assign	12. to 120.				
$(7) \frac{\text{RST}}{\text{MOD}}$	RD3-1	Enter the Block-A Parameter Setting Mode.				
3 times	<i>#04-#</i>	The Custom Parameter Number A04-0 will display.				
(8)		The display will alternate between Parameter number A04-0 and the value of Parameter number B10-0 (Acceleration time 2).				
	17.	Parameter Number A04-0 is the same value as that of Parameter Number B10-0.				
(9) SET	10.0	Parameter B10-0 can be changed now from parameter A04-0.				
(10)	7.5	Change the value as required.				
(11) SET		Store the new value.				
	9.5					

Note 1) If the Parameters C10-n values are either 1.99.9 or any other undefined values, Parameters A04-n will be skipped during Parameter scan.

Note 2) If all the C10 Parameters are set at 1.99.9. all the A04 Parameter block will be skipped during Parameter scan.

4-8 Reading fault history

- 1) Parameter number d20-0 in the Monitor Mode is an entry into the Fault History Mode.
- 2) The following is an example in which the Fault History Mode is entered.

Keys	Display	Explanation
(1) LCL 6 times	50.00 •Hz	(D00-0 will display in the Monitor Mode.) Select Monitor Parameter D20-0.
(2) SET		The [ERR] symbol will display after one second. Select and enter the Fault History Mcde. The fault history number Empland the fault code will display alternately.
(3) SET Or RST MOD	5E-2 32B-B ↓ (EFF)	Scan the contents of the fault buffer using the key and known known known buffer using the key and known kno

3) The Fault History Buffer is configured as shown below.

Change of display	Fault sequence	Fault History number	Display (Example)	Explanation
6	Fault 1	E00	<u> 60-3</u>	Latest Fault Code
	(the latest)	L2:	P :	Secondary Fault Code
		02	'⊣。[] [] ●Hz	Output frequency at the Fault
LCL		E03	'-¦。-¦ ●A	Output current at the Fault
	Fault 2	E10	UG-2	
		E11		No Secondary Fault
		E12	50. 00 •Hz	
LCL		E13	2.9●A	
	Fault 3	E20		Indicates that no Fault has been
		E21		recorded.
		E22		
		E23		
	Fault 4	E30		Indicates that no Fault has been
		E31		recorded.
,		E32		
		E33		

- 4) Set parameter C09-6 to 1 to clear the Fault History Buffer.
- 5) Refer to the Appendix 3 for details

Chapter 5 Control Input / Output

5-1 Input / Output Terminal Function

The terminal block and input/output functions related to control are shown in Tables 5-1.

Table 5-1 Terminal block functions

	Symbol	Name	Features		
	RY0, RY24	Relay input common	This is a common terminal for relay input signals specified below. Either sink or source log c control can be changed with internal jumper W1.		
l =	PSI1~PSI5	Programmable input	These are programmable inputs, which can be assigned to remotely ON/OFF control of the sequence input functions (C03 to C06).		
Sequence input	EMS	Emergency stop	If EMS is ON while the VAT2000 is stopped, all operational commands are intilities. It is ON during operation, the VAT2000 is led into a stopping sequence, either ramp flown stop or coast-to-stop selectable. It is also possible to output this signal as a fault (FLT). (C00-4)		
Seq	RESET	Fault reset	This reset a faulty condition. With this signal, a fault status output ("LT LFD, "AULT relay operation) is turned OFF and operation is allowed again.		
	RUN	Forward run	This is a command for forward run. Either permanent or push buttons commands for run/reverse control can be selected. Operating command for RUN erminal is allowed in the remote operation mode (LCL LED unlighted). (C00-0)		
	FSV	Voltage/frequency setting	This is mainly used for frequency (or speed) setting it out. It a maximum frequency (speed) setting is available at a 10V input. This setting is enable when VFS of the internal relay signal is ON. (C04-1, C07-0=2, C12-0=1)		
Analog input	FSI	Current/frequency setting	This is mainly used for frequency (or speed) settin, input. A maximum frequency (speed) setting is available at a 20mA input. This second is valid when IFS of the internal relay signal is ON. (C04-2, C07-1=3, C12-1=1)		
Ana	AUX	Auxiliary input	This is mainly used for frequency (or speed) etting input. A maximum frequency (speed) setting is available at a ±10V input. This setting is valid when AUX of the internal relay signal is ON. (C04-3, C07-2=4, C12-2=1)		
	COM	Analog input common	This is a common terminal 10, TSV, and AUX signals.		
t	FM	Frequency meter	This is a voltage output so nal for intering purpose. As default, a 10V output is available at the maximum frequency. The output voltage can be adjusted from 0.2 to 2.0 times 10V. (Max. output is, however, approximately 11 volts.) Internal analog signals other than output frequency can also a out ut. (C13-0, C14-0)		
Analog output	AM	Ammeter	This is a vol. age output signal for metering purpose. As default, an output of 5V is available for the rated current. This output voltage adjustment of 0.2 to 2.0 times of 5V is also available. Internal array signals other than those of current can also be output. (C13-1, C14-1)		
Anal	СОМ	Analog output common	This is common terminal for the analog outputs.		
	P10	FSV source	This is a 10V source used when a frequency (speed) setter is connected to the FSV input circuit e frequency (speed) setter to be used should be a variable resistor of 2W and $2k\Omega$.		
	RC, RA	RUN	This is a contact to be ON during operation or DC braking. Other internal ON/OFF signals can be output with the C13-2 setting.		
out	FC, FA, FB	Fault	These contacts switch when a fault occurs (then the FLT LED lights). When a fault occurs, NO contact FA-FC switches to ON and the NC contact FB-FC switches to OFF.		
Sequence output	PSO1	READY (1)	This is the open collector output that turns ON at READY status. Other internal signals can be output with the C13-3 setting.		
dneuc	PSO2	Current detection	This is the open collector output that turns ON when the output current reaches the setting. (C15-1) Other internal signals can be output with the C13-4 setting.		
Se	PSO.	Frequency (speed) attainment	This is the open collector output that turns ON when the output frequency (speed) reaches the setting. (C15-0) Other internal signals can be output with the C13-5 setting.		
	PS\ E	Open collector output common	These are the common terminals for the PSO1, 2 and 3 signals.		

5-2 Control Input / Output Circuit

Examples of the control input/output circuit wiring are shown in table 5-2. The precautions must be observed during wiring.

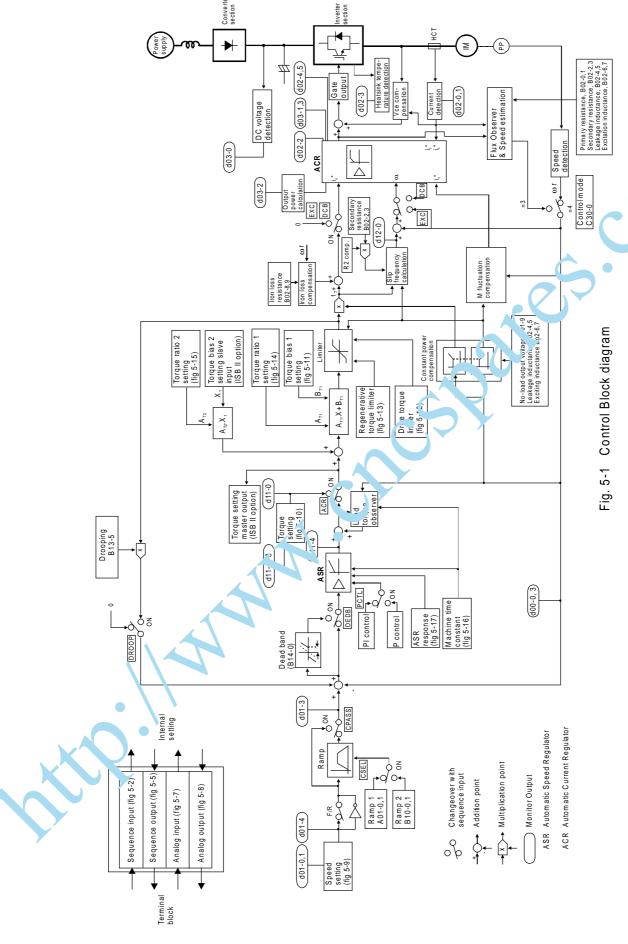
Table 5-2 Control input/output circuit

Function	Example	of wirings		Preca	autions		
Sequence input	(a) Sink logic RY24V	(b) Source logic	1.	Wiring must not	be longer	than 50m.	
	4.7kΩ ¥×K	RY24 → RY24V	2.	The allowable le	eakage cu	rrent is	
	RYO 5mA	ο 4.7kΩ	3.	Use an adequat	e current	contact.	
	L<50m RY0V	L<50m 5mA	4.				t.
	L<50m RY0V 1 0	1 O RY0V	5.	The sink/source	logic can	bs haline	ⁱ Cl
	W1 O	W1 O O		by jumper W1. (1: Sink 2:	Sourc 3)	
Analog input and P10 output	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+15V 0 750Ω A	1.	Use $2k\Omega$ (2.5k Ω) the external vari			or
	ZkΩ	M 20kΩ Amp	2.	The maximum 0.0 to +10.5 v.	put rating	of FSV is	-
	2W FSI	0V 1	3.	Use a shield to for the wing.	wire shorte	er than 30n	n
	P	244Ω	4.	For this diconne			
	±10V AU	Amp	5.	The maximum in		for FSI is	0
	▼ L<30m ►	85kΩ	6.	to +2, ¬A or 0 to 50 not link to the		put.	
Analog output	100	FM Amp	‡ /.	Use a 10V full s	cale mete	r	_
		1mA COM		(impedance: 10	_	•	
				The maximum of	•		
	5V	AM 0V	3.	Use a shielded for the wiring.	wire shorte	er than 30n	n
		сом	4	For shield conne	ections co	nnect to	
	\			COM terminal o			
Sequence output	RA	RUN O O	1.	Use within the rabelow. To comp			
(Relay output)				30VAC/DC or le		,	
	RC	· •			RUN	FLT	
		FLT		Rated capacity	250VAC 1A	250VAC 0.4A	
	FA FB	<u>~~~~</u>		(resistive load)	30VDC 1A	30VDC 1A	
	FC	-0-0-1		Max. voltage	250VAC	250VAC 220VDC	
		_		Max. current Switching	1A	1A	
	L<50m			capacity	100VA 100W	50VA 60W	
			2.	The wire must b	e shorter	than 50m.	
Sequence	max. 50mA	PSO1~3	1.	To drive an indu			
cutput (Open collector	Coil max. 30VDC	* ***		coil, insert the flin the drawing.			
output)	L<50m	PSOE ATN		Keep the wiring	•		
			3.	Use within the for 30VDC, 50mA	ollowing ra	iting range	

5-3 Programmable sequence input function (PSI)

The VAT2000 can basically be operated in three modes, from drive's terminal block, from the operation panel and from the serial communication ports. Input signals like RESET or EMS operate in all cases, but some others can be enabled or disabled for operation by the changeover switches (J1, J2) or programmable sequence input function COP. (Check fig 5-2)

The digital standard input functions in the basic PCB terminal block of VAT2000, includes three fixed function inputs which are forward run, reset and emergency stop. There are also five programmable digital inputs, which can be randomly assigned with functions selected from Table 5-5 Four additional programmable inputs are available using the relay interface option card U2KV23RY0.


The standard programmable input terminals are PSI1 to PSI5. When extended, the terminals are PSI1 to PSI9. The default settings are as shown below.

Default settings

Symbol	Setting
PSI1	Reverse run
PSI2	Forward jogging
PSI3	Reverse jogging
PSI4	None
PSI5	None

The fixed input signal functions are given in Table 5-1, and the programmable input signal functions are given in Table 5-3.

The general block diagram for vector control operation is shown in Fig.5-1...

Table 5-3 Programmable sequence input functions (1)

Connection of PSI1 to PSI9 is possible. Note that PSI6 to PSI9 are options. The connection is done with data Nos.: C03 to C06

Symbol	Name	Function		
R RUN	Reverse run	This is a command for reverse run. This command allows run/reverse switchover when C00-0=2.		
F JOG	Forward jogging	These are jogging commands. If this signal is ON while RUN is OFF, the		
R JOG	Reverse jogging	output frequency or motor speed is fixed according settings in (A00-1 or 3). For stoppage, either ramp down stop or coast-stop is available.		
HOLD	Hold	This is a stop signal used when Forward or reverse operation to RUN/x. V is commanded by push-buttons (self-hold mode). The VAT2000 stops vith this signal turned off.		
BRAKE	DC brake	DC brake can be operated with this signal.		
		During the PM motor control mode, DC excitation is provided v this function.		
СОР	Serial transmission selection	When this function is ON, settings or sequence control commands are received from the serial communications port. Some of these however can be controlled from the drive's terminal block with parameter C00-6		
		C00-6 Input Point		
		ON 1 control from a mir.al block		
		2 Control from semal transmission		
		Check drawings on fig 5-2		
C SEL	Ramp selection	Accel./decel. standard and second yit mps switchover.		
	, , , , , , , , , , , , , , , , , , , ,	Accel./decel. time 1 (A01-J, I) is available when CSEL is OFF.		
		Accel./decel. time 2 (B10-11) available when CSEL is ON		
I PASS	Ratio interlock bypass	Ratio interlock operation is bypassed. This is the ratio between frequency setting input and frequency setting output		
CPASS	Ramp bypass	The ramp funct on is by-passed		
VFS	Speed setting 1	The frequency (speed) setting is carried out with the input selected with C07-0. When inputs are entered simultaneously, setting is		
IFS	Speed setting 2	The frequency (speed) setting is carried selected in accordance with following preference order.		
AUX	Speed setting 3	The frequency (speed) setting is carried vith the input selected with C07-2.		
PROG	Program function hable	sed for multiple setting. Selection of up to 8 fixed speeds (PROG0~PROG7)		
CFS	Seria! con.munica.ion settir.g select	Allows speed (or torque) setting from serial communication port.		
S0 to S3 SE	Program setting selection	When PROG is ON, the 8 program frequency (speed) (B11-0~7), are selected by S0-S3, SE . BCD or direct selection allowed with B11-8		
FUP	Frequency (speed) increase	The currently frequency (speed) setting in (A00-0, A00-2) or program frequency setting 0 to 7 (B11-0~7) is increased or decreased by FUP or		
-DW	Frequency (speed) decrease	FDW functions The frequency output (or speed) is increased or decreased according valid acceleration or deceleration ramp time.		

Table 5-3 Programmable sequence input functions (2)

Symbol	Name	Function
BUP	Ratio interlock bias increase	When IVLM is ON, the ratio interlock function increases or decreases the frequency setting output by BUP or BDW functions. The motor increases
BDW	Ratio interlock bias decrease	or decreases its speed according currently valid ramp rate. When IVLM turns OFF, the bias increase/decrease value will be cleared
IVLM	Bias BUP/BDW selection	to zero, and BUP/BDW operation will be disabled.
AUXDV	Auxiliary drive selection	The dual drive settings are validated with this signal.
PICK	Pick-up	While this signal is ON, pick-up (flying start) operation is effected as so in as RUN or R RUN is ON.
EXC	Pre-excitation	Pre-excitation is applied to the motor. Pre-excitation consist o establishing only the flux in the motor without generating toque is useful when high torque is required immediately at the start time.
ACR	ACR	ACR operation is selected.
PCTL	P Control	ASR control is changed from the PI control to the Pi control.
LIM1	Drive torque limit changeover	When this function is ON, is possible to control the converted to the converted the converted to the convert
LIM2	Regenerative torque limit changeover	When this function is ON, is possible. control the regenerative torque limit, by an analog input signal or a serial transmission signal.
MCH	Machine time constant changeover	This function allows ASR coin changeover from two machine time constant values. machine time constant 1 (10 I) is available if MCH is OFF. Machine time constant 2 (B15-0) is available if MCH is ON.
RF0	0 setting	The speed setting is changed to 0 rpm.
DROOP	Drooping changeover	Drooping function is validated. (B13-5)
DEDB	Dead band setting	The dead band setting of ASR is validated. (B14-0)
TRQB1	Torque bias setting 1	The to. Tie bias input 1 is valid.
TRQB2	Torque bias setting 2	The torque bias input 2 is valid.
PIDEN	PID con ~! selection	The PID control is validated. Useful function for slow processes control

(Note) ASR: Automatic Speed Regulator ACR: Automatic Current Regulator

5-4 Programmable sequence output function (PSO)

As standard, there are five digital outputs in the VAT2000 (1NO/NC dry contact, one NO dry contact and three open collector transistor outputs). The 1NO/NC dry contact output is fixed to fault output, but the other four channels are programmable and can be set arbitrarily to any of the output signals given in Table 5-4.

Two additional dry relay outputs are possible by Optional PCB interfaces (type: U2KV23RY0 or U2KV23PI0).

The programmable output provided in VAT2000 as standard are RA-RC, PSO1, PSO2 and PSO3.

Default values

Terminal symbol	Setting
FA-FB-FC	Fault: Fixed
RA-RC	Run
PSO1-PSOE	Ready (1)
PSO2-PSOE	Current detection
PSO3-PSOE	Frequency (speed) attainment

The functions of the programmable output signals are given in Table 5-4.

Table 5-4 Programmable sequence output functions

Symbol	Name	Function	
RUN	Run	This turns ON during running, jogging or DC braking. Turning ON or OFF during pre-excitation can be selected.	
		C00-7 U/\ c + but	
		1 ON during p. ex 'ciion	
		2 OFF du. ng pre excitation	
FLT	Fault	This turns ON during a fault.	
MC	Charge completed	This turns ON when the DC main circuit vultage reaches full voltage after power ON	
RDY1	Ready (1)	This turns ON when there is no . ult 'MS is not activated, and pre-charging is done.	
RDY2	Ready (2)	This turns ON when the o is no fault, EMS is activated and pre-charging is completed.	
LCL	Local	This turns ON when the operation mode is local (operation from the operation panel).	
REV	Reverse run	This turns ON while the motor is running in reverse direction.	
IDET	Current detection	This turns ON when the utput current reaches the detection level (C15-1) or higher.	
ATN	Frequency (speed) attainment	This turns CN when the output frequency (speed) reaches the set frequency (speed). The detection reach width is set with C15-0.	
SPD1	Speed detection (1)	This turns On when the output frequency (speed) absolute value reaches a speed higher than the eed set with the detection level (C15-2).	
SPD2	Speed detection (2)	This turns ON when the absolute motor speed reaches a speed higher than that set in the ction level (C15-3).	
COP	Transmission seiec.	This turns ON when serial transmission operation is selected.	
EC0~EC3	Fault code 0 to F	This outputs the fault messages with a 4-bit binary code. EC0 is the low-significant bit, and EC3 is the most significant bit. Refer to Appendix 3 for details on the fault codes.	
ACC	Acce, eration	This turns ON during acceleration.	
DCC	L ecele ation	This turns ON during deceleration.	
AUXDV	Auxiliary drive selection	This turns ON when the auxiliary drive parameter setting is validated by the sequence input AUXDV.	
ALM	Mor fault	This turns ON during a minor fault.	
FAN	Fan control	This turns ON during running, jogging, pre-excitation and DC braking. A three minute off delay is provided. This is used for external fan control.	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Automatic start wait	When the automatic start function is enabled by C08-0, ASW will turn ON while waiting for automatic start.	
. 3P	Zero speed	This turns ON when the output frequency (speed) absolute value is below the level set with zero speed (C15-4).	
LLMT	PID lower limit	These turns ON when the feedback value exceeds the limit value (<b43-3) (="" or="">B43-4)</b43-3)>	
ULMT	PID upper limit	during PID operation	

(Note) "ON" indicates that the contact is closed.

5-5 Sequence input logic

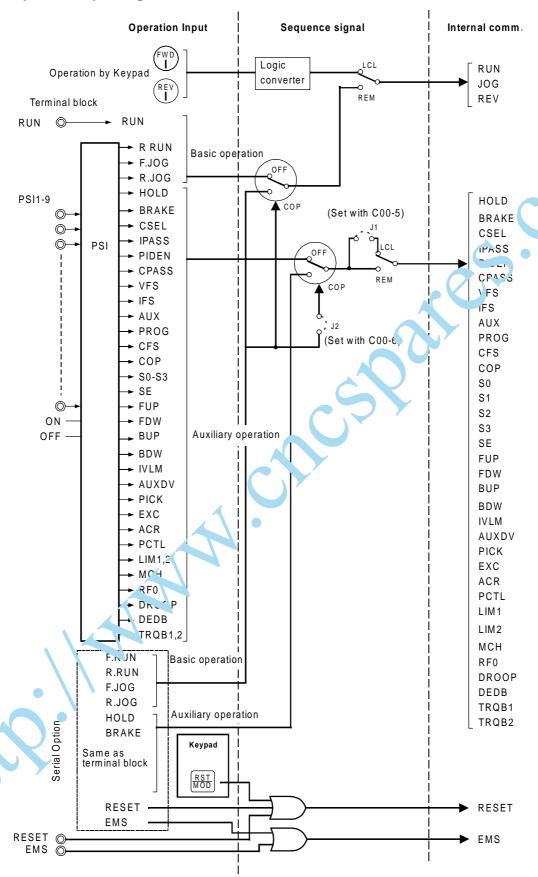


Fig. 5-2 Sequence input logic

5-6 Changing of terminal functions

The programmable input terminals (PSI1 to PSI9) can be arbitrarily assigned to control internal commands. On the other hand the state of some internal functions can be connected to the programmable output terminals (RA-RC and PSO1 to PSO5) to lead out the ON/OFF signals.

5-6-1 Sequence input terminal assignment and monitoring

The functions that can be assigned to the terminal block are shown in Fig. 5-3. Each internal function can be fixed to ON (set value to 16) or OFF (set value to 0). If the function is set for example at "1", then input PSI1 can switch that function ON/OFF. Fig 5-3 shows the default assignment, where R.RUN has been assigned to PSI1 input (C03-0=1).

Fig. 5-4 shows monitoring display allowed by parameter D04-0, 1, or 2. Thus the ON state of each internal signal can be known trough the operation panel display.

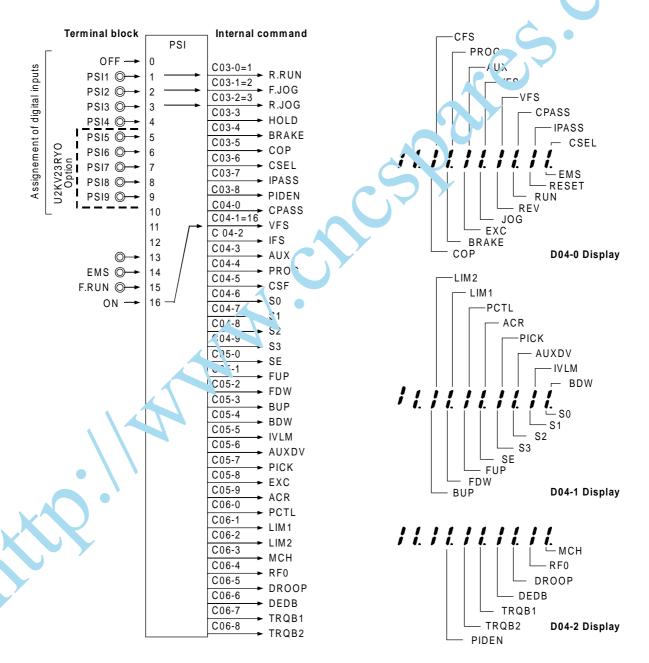


Fig. 5-3 Assignment of sequence input

Fig. 5-4 Sequence input monitor

5-6-2 Sequence output terminal assignment and monitoring

The ON/OFF of the internal signals can be output to the RA-RC and PSO1 to 3 (common: PSOE) terminals as shown in Fig. 5-5 by the parameter Nos. C13-2 to 5 and C33. The ON/OFF of each signal can be monitored as shown in Fig. 5-6. This monitoring is executed with D04-3, 4.

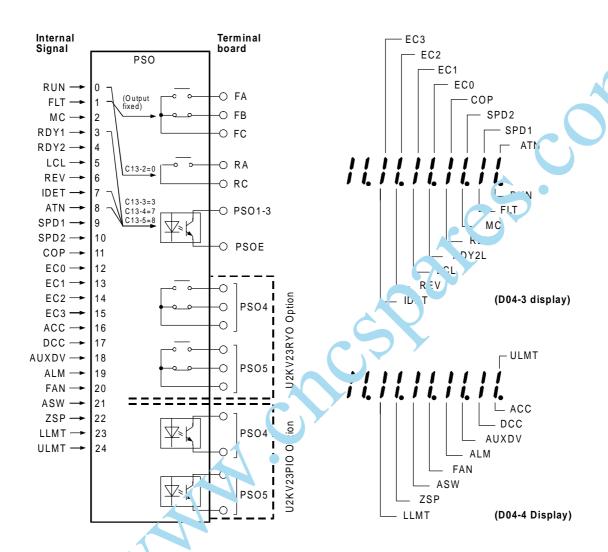


Fig. 5-5 Assign. ant of sequence output

Fig. 5-6 Sequence output monitor

5-7 Programmable analog input function (PAI)

5-7-1 Types of analog inputs

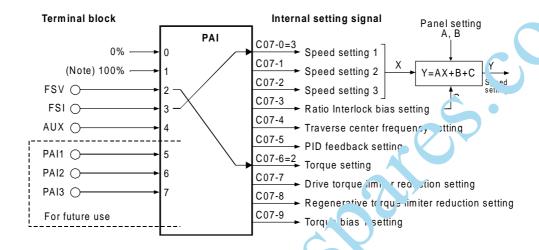
The VAT2000 includes as standard three analog inputs to terminals FSV, FSI and AUX. Each analog input can be connected to the internal setting signals shown in Table 5-5 by using the programmable input function.

By connecting an analog interface option (type: U2KV23AD0), the programmable input terminals can be expanded to up to six channels.

Table 5-5 Types of internal setting signals assigned to analog input

	Setting range (Note 1)		e (Note 1)	
Ciam al	FSV FSI AUX			
Signal name	0-10V	Function		
Speed setting 1 Speed setting 2 Speed setting 3	0~1	00%	-100~100% 0~100%	This is the speed setting. The (+) polarity is forward run, and the (-) polarity is the reverse run settings. When the speed setting by an alog signal is enabled, then setting 1,2,3 may be select with the sequence input functions (VFS, IFS,A.\X).
Ratio interlock bias setting	0~1	00%	-100~100% 0~100%	This allows bias setting (c) to ratio interlock function using an analog in the
Traverse center frequency setting	0~1	00%	0~10V 0~5V 0~100% (Note 2)	This allows center frequency setting for traverse operation, using an analog input. The positive polarity is the forward run, and the negative polarity the reverse run.
PID feedback	0~1	00%	0~10V 0~5V 0~100% (Note 2)	n. is is used for feedback signal to the PID function, usin, external sensor. D) not use the PID for speed control Do not use the programmable analog output (FM, AM) as PID's feedback signal.
Torque setting	0~3	00%	-300 -300% 0~100%	This is the analog setting for torque control. The (+) polarity is the forward direction torque, and the (–) polarity is the reverse direction torque. The torque setting can be limited by using the torque limiter function (A11-2, 3).
Drive torque limit reduction setting	0.1	0.1%	0~10V 0~5V 0~100% (Note 2)	The drive torque limit (A10-3 or A11-2) may be reduced in percentage using an analog input. For example using a signal of 0V to +10V the limit torque is reduced from 0 to 100% This function is enabled when LIM1, is ON.
Regen . 'ive torqu' limit ru'uctiu' setti. 1	0~1	00%	0~10V 0~5V 0~100% (Note 2)	The regenerative torque limit (A10-4 or A11-3) may be reduced in percentage using an analog input. This function is enabled when LIM2 is ON.
Torque bias 1 setting	0~3	00%	0~100% -300~300% 0~300%	A torque bias signal during either speed or torque control is allowed using an analog input.
			0~300%	This is enabled when the torque bias function TRQB1, is ON

(Note 1) FSV, FSI, AUX inputs and modes are selected with C12-0 to 2.


(Note 2) AUX: The setting is limited to 0% during the -10 to 0V and -5 to 0V input.

5-7-2 Setting the analog input

The analog inputs can be randomly assigned to the internal setting signals given in Table 5-5 by setting parameters C07-0 to 9 as shown in Fig. 5-7.

For example if C07-0 (speed setting 1) is set to "0" this function is disabled; if it is set to "1" the speed setting function is fixed at 100%, but if C07-0 is set to "3", then the speed setting 1 function can be controlled by terminal board input FSI. More details are given in section 6 (C07 parameter list).

An analog interface option type: U2KV23AD0 is necessary to use the additional analog inputs PAI1 to 3.

(Note) The torque setting is 300% when C07-6 is 7

Fig. 5-7 Analog np assignment

The sequential ratio operation can be carried at in respect to speed settings 1 to 3. (Refer to 6-6.)

5-8 Programmable analog output function (PAO)

5-8-1 Types of analog outputs

As a standard, there are two programmable analog outputs (10 bits) in the VAT2000, with terminal board numbers FM-COM, and AM-COM. Two more analog outputs are available by the optional PCB U2KV23TR0 (Trace Back option).

Each output can be programmed with the internal functions shown in Fig. 5-8. As default, FM is assigned as "output frequency" and AM is assigned as "Motor output current".

Default	settings
DCIGGIL	Settings

Terminal symbol	Setting
FM	Output frequency
AM	Output current (Motor)

5-8-2 Setting the analog output

The following internal data or functions can be output to FM, AM terminals v parameters C13-0 and C13-1 as shown in Fig. 5-8.

The extended analog outputs AO1 and AO2, can be addressed with the internal data by parameters C39-0 and C39-1.

If needed, the gain of analog outputs can be adjusted by parameters C14-0, C14-1.

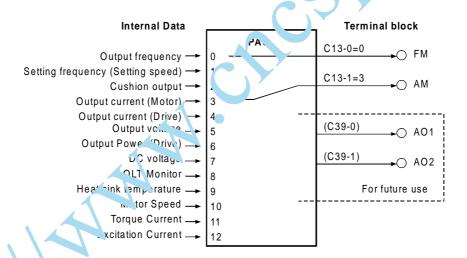


Fig. 5-8 Analog output assignment

5-9 Selecting the setting data

5-9-1 Speed setting

(1) Speed setting selection

The speed setting in VAT2000 is possible from either analog input signals, or from host computer or from the operation panel. There are a total of nine different setting, all selectable.

Setting input point	Setting data	Explanation
Analog	Analog speed setting 1 Analog speed setting 2 Analog speed setting 3	The speed setting is possible from either of three analoginputs provided as standard in the VAT2000.
Serial or parallel	Serial speed setting	The speed setting is allowed from a host computive, the bugh the programmer port or using the serial interface option U2KV23SL0, or optional Profibus DP interface.
	Parallel speed setting	The speed setting is allowed from a how PLC vith parallel transmission. A PC interface option type U2kV23PI0 is required.
Operation	Speed setting	The speed setting is allowed by paral peter (A00-0 or 2).
panel	Panel jogging setting	The speed setting is allowed by pa. meter (A00-1, 3).
	Traverse operation	The speed setting is allowed, y parameters (B44-0 to 6), when the "Traverse" function is enabled.
	Pattern Run operation	The speed setting veo by parameters (B50-0 to B59-3), when the Pattern Run function is enabled

(2) Speed setting selection sequence

The ratio of the speed setting (Ratio Interlock) and sequence control for signals is shown below. Refer to Section 6-5, B06 (Ratio interlock setting) for details.

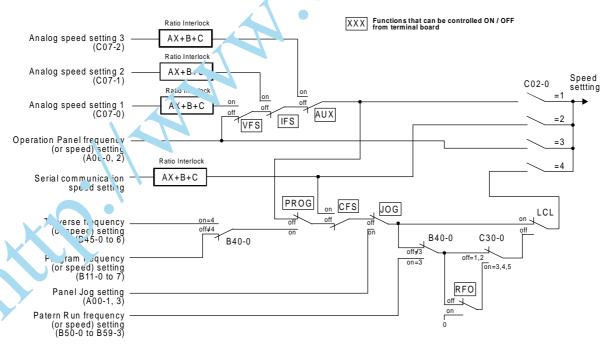


Fig. 5-9 Speed setting selection

5-9-2 Torque setting

(1) Torque setting selection

The torque setting in VAT2000 is possible from either analog signals, serial communications or from the operation panel. All these are selectable by the user.

Setting input point	Setting data	Explanation
Analog	Analog torque setting	The torque setting is possible from the analog input.
Serial	Serial torque setting	The torque setting is allowed from a host computer with serial transmission. A serial interface option type U2KV23SL0 is required.
Panel	Panel torque setting	The torque setting is allowed by parameter (B13-2).

(2) Torque setting selection sequence

The torque setting interlock sequence is shown below.

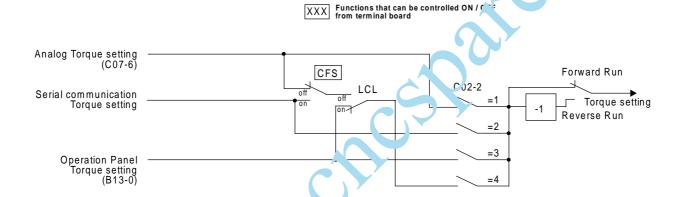


Fig. Torque setting selection

5-9-3 Torque bias 1 setting

(1) Torque bias 1 setting selection

A torque bias setting is possible from either analog signals, serial communications or from the operation panel. All these are selectable by the user.

Setting input point	Setting data	Explanation
Analog	Analog torque bias 1 setting	This torque bias setting is possible from an analog input.
Serial	Serial torque bias 1 setting	This torque setting is allowed from a host computer with serial transmission. A serial interface option type U2KV23SL0 is required.
Panel	Panel torque bias 1 setting	This torque bias setting is allowed by parameter (B13-0).

(2) Torque bias 1 setting selection sequence

The relation of the torque bias 1 setting and changeover sequence is show below.

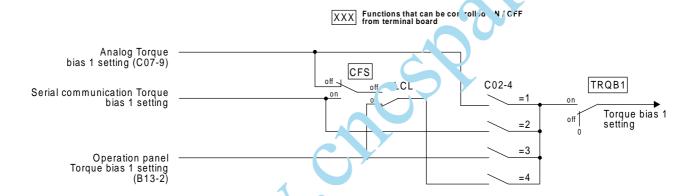


Fig 5-11 regue bias 1 setting selection

5-9-4 Torque limiter function

(1) Torque limit setting selection

The torque limit can be set independently for both speed control (ASR mode) or torque control (ACR mode) independently for drive or regeneration status. If the VAT2000 is stopped by the emergency stop signal (EMS), then the regeneration limit is fixed by parameter A10-5.

The parameters used in the torque limiter function are shown below...

A1 3: ASR drive torque limit setting

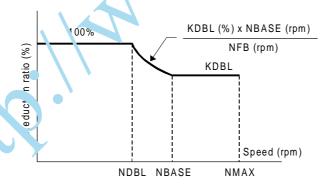
\10-4 : ASR regenerative torque limit setting

A10-5: Emergency stop regenerative torque limit setting

A11-2: ACR drive torque limit setting

A11-3: ACR regenerative torque limit setting

The value of above limits can be reduced by external settings. The final limit value results multiplying the above selected limit with the reduction ratio.


(1-1) External reduction setting

The torque limit can be reduced using the signal provided from an analog input or from the serial transmission. Either analog or serial signals can be selected by setting a parameter or from the drive's terminal board.

Setting input point	Setting data	Explanation
Analog	Analog drive torque limit reduction setting	The drive torque limit (A10-3 or A11-2) may be reduced in percentage using an analog input. For example using a signal of 0V to +10V the limit torque is reduced from 0 to 100%. This function is enabled when LIM1, is ON.
	Analog regenerative torque limit reduction setting	The regenerative torque limit (A10-4, A10-5 or A11 3) may be reduced in percentage using an analog input. For example using a signal of 0V to +10V the limit 'orqu' is reduced from 0 to 100%. This function is enabled when LIM2 is ON.
Serial	Serial drive torque limit reduction setting	A serial interface option U2KV23SI.2 The drive torque limit (A10-3, A11-2), may be reduced in a percentage using the data 0 to 100 covided from serial transmission. For example using a signal or 0 to 100% the limit torque is reduced from 0 to 100% This function is enabled when LIM1 is ON.
	Serial regenerative torque limit reduction setting	A serial interface optic \$\su2KV23SL0\$ The regenerative on ue \$\sin\$ if (A10-4, A10-5, A11-3), may be reduced in a percentage using the data 0 to 100% provided from serial transmission. For example using a signal of 0 to 100% the limit torque is reduced from 0 to 100%. This function is enabled when LIM2 is ON.

(1-2) Internal reduction setting

The torque limit may be required as well by setting a value lower than 100% in the parameter "Double rating speed ratio", R13-4. The reduction generated in the limiter function, in percentage, is shown below, and will depend of the base speed and real speed ratio. The resultant multiplier will reduce the limit values set in A10-3, A11-2, A10-4, A10-5 and A11-3.

KDBL: B13-4

Double rating speed ratio (%)

NFB: Speed detection (rpm)
NBASE: Base speed (rpm)
NDBL: NBASE x KDBL (rpm)

(2) Torque limit setting selection sequence

The interlock sequence for torque limit settings is shown below.

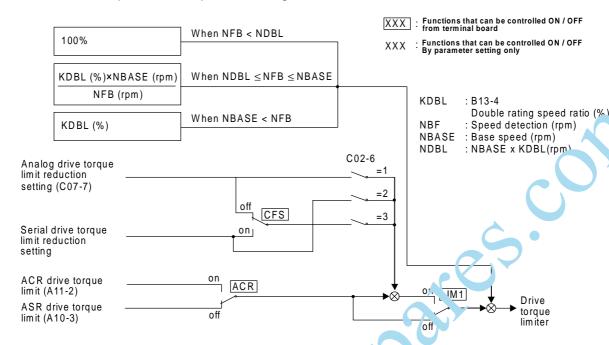


Fig. 5-12 Drive torque limit setting section

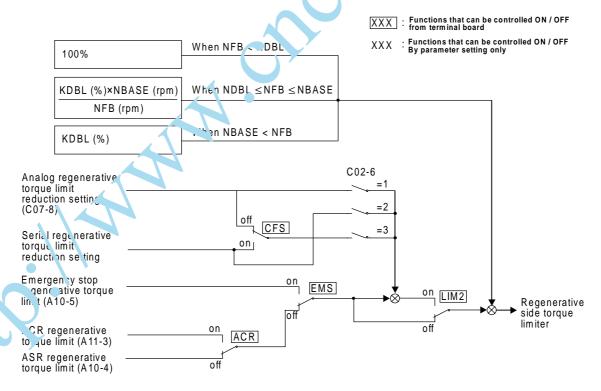


Fig. 5-13 Regenerative torque limit setting selection

5-9-5 Torque ratio 1 setting

(1) Torque ratio 1 setting selection

The torque setting from ASR or from the outside can be operated with the multiplier factor given by function "Torque ratio 1". This function can be set from either the Operation Panel or from the serial communication function.

Setting input point	Setting data	Explanation
Serial	Torque ratio 1 setting	This is a setting value allowed from the host computer wit'. serial transmission.
Panel	Panel torque ratio 1 setting	This is a setting value allowed from the parameter (P15).

(2) Torque ratio 1 setting selection sequence

The interlock sequence for the Torque ratio 1 setting is shown below.

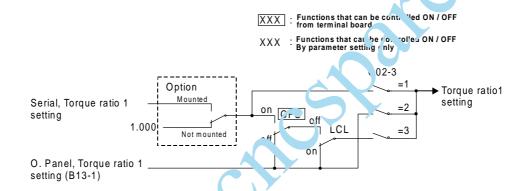


Fig. 5-14 Torque ratio 1 setting selection

5-9-6 Torque ratio 2, torque bias 2 setting

(1) Torque ratio 2 setting selection

The following two types of torque ratio 2 setting inputs can be used.

One of the two types of inputs can be selected by setting a parameter or with the sequence input.

Setting input point	Setting data	Explanation
Serial	IO link II torque ratio 2 setting	This is a setting value issued from the host computer with serial transmission. An IO link II serial interface option (type: U2KV23SL2) is required.
Panel	Panel torque ratio 2 setting	This is a setting value issued from the parameter (B12.3)

(2) Torque ratio 2 setting selection sequence

The relation of the torque ratio 2 setting and changeover sequence is as shown below.

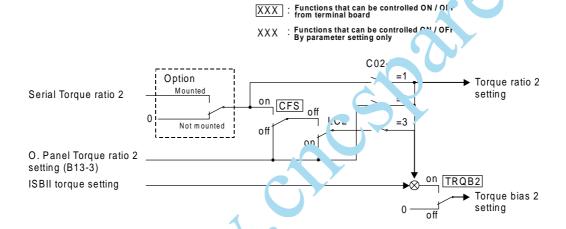


Fig. 15 Torque ratio 2 setting selection

5-9-7 Machine time constant setting

(1) Machine time constant setting

The ASR need acknowledge of machine (load) time constant. This value can be set from either serial communication or through the Operation panel (this allows two different settings). One of the three types of inputs can be selected by setting a parameter or with the sequence input.

Setting input point	Setting data	Explanation
Serial	Machine time constant	This is a setting value issued from the host computer by serial transmission.
Panel	O. Panel machine time constant –1	This is a setting value issued from the parameter (A1C 1)
	O. Panel machine time constant –2	This is a setting value issued from the parameter (B15-0).

(2) Machine time constant setting and changeover sequence

The interlock sequence for the machine time constant setting is shown below.

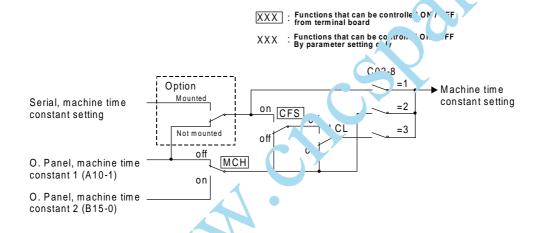


Fig. 5-10 Machine time constant setting selection

5-9-8 ASR response setting

(1) ASR response setting selection

The ASR need acknowledge of the response time required. This value can be set from either serial communication or through the Operation panel.

Setting input point	Setting data	Explanation
Serial	ASR response setting	This is a setting value issued from the host computer with serial transmission.
Panel	O. Panel ASR response setting	This is a setting value issued from the parameter (A10-0).

(2) ASR response setting and changeover sequence

The interlock sequence for the ASR response setting is shown below.

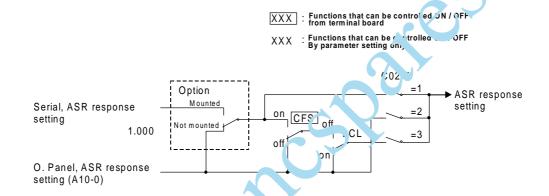


Fig. 5-17 ASR response setting selection

Chapter 6 Control Functions and Parameter Settings

6-1 Monitor parameters

6-1 Monitor parameters

The monitor mode sequentially displays the frequency, power supply, etc., parameters recognised by the VAT2000.

The symbols used in the "Application" column are:

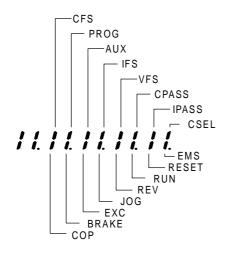
ST: Indicates parameters used for all control modes (C30-0 = 1 to 5) including V/f control (constant torque, variable torque), sensor-less vector control, and vector control with sensor and PM... otor control.

V/f: Indicates parameters used for V/f control (constant torque, variable torque) (C30-0 = 1, 2)

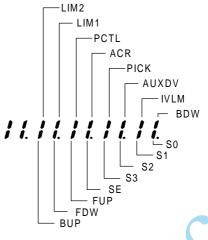
VEC: Indicates parameters used for IM sensor-less vector control and IM vector control with sensor (C30-0 = 3, 4).

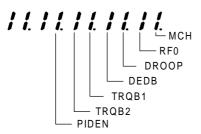
PM: Indicates parameters that are used for PM motor control (C30-0=5)

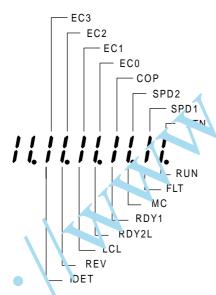
Monitor parameters list

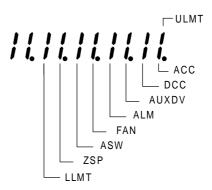

	,		Monitor parameters not				
No.	Parameter	Unit	Remarks			cation	
				ST	V/f	VEC	PM
D00 - 0	Output frequency monitor						
0	Output frequency in Hz	Hz	☐ F F will display when the VAT2000 is in s and	0			
1	Output frequency in %	%	├ displays while the DC brake is in arin.				
			PLI is displayed during pick up (Flyi) Star,				
2	Motor speed in min ⁻¹	min ⁻¹	The forward run direction is displayed v. h the + polarity, and the reverse run direction with the - relarity (This is displayed			0	0
3	Motor speed in %	%	even when stopped.)				
D01 – F	requency setting monitor						
0	Setting frequency in Hz	Hz	The currently select setting value is displayed.		0		
1	Setting frequency in %	%	The max. frequency is dis, 'ayed as 100%.		0		
3	Setting speed (Output Ramp)	min ⁻¹	The set speed at ASK input point is displayed. The forward fun direction is displayed with the + polarity, and			0	0
	(Output Ramp)		the reverse rudirection with the - polarity.				
4	Setting speed	min ⁻¹	The sot speed at the ramp function's input point is displayed.			0	0
	(Input Ramp)		The for vard run direction is displayed with the + polarity, and the cose run direction with the - polarity.				
D02 – C	Current monitor						
0	Output current Amps	Α	☐ F F will display when the VAT2000 is in standby.	0			
1	Output current in %	10	The motor rated current is displayed as 100%.	0			
2	Overload (OLT) monitor	0/,	OLT functions when this value reaches 100%.	0			
3	Heatsink temperature	°C		0			
4	Torque curi ent detection.	%	The torque current detection value is displayed using the motor rated current as 100%. The forward run direction torque is displayed with the + polarity, and the reverse run direction torque with the – polarity.			0	0
5	Excitation curren detection	%	The excitation current value is displayed using the motor rated current as 100%.			0	0
D03 – V	/cmo_tor						
0	C vo. age	V	Displays the voltage of the DC link circuit in the main circuit.	0			
1	Conditivoltage (con. rand)	V	Displays output voltage command. The display may differ from the actual output voltage. 5.5 5 will display when the drive is in standby.	0			
7	Output power	kW	Displays the inverter's output power. 5 F will display when the drive is in standby.	0			
3	Carrier frequency	kHz	The current carrier frequency is displayed.	0			
D04 - S	Sequence status						
0 ~ 2	Input		The ON/OFF state of the internal sequence data will display.	0			
3 ~ 4	Output		The correspondence of each LED segment and signal is shown in the next page.	0			

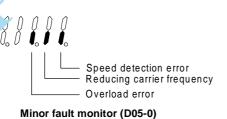
Monitor parameters list


No.	Parameter	Unit	Remarks	-	Appli	cation	า
				ST	V/f	VEC	PM
D05 - N	linor fault monitor						
0	Minor fault		The internal minor fault status will display.	0			
			The correspondence of each LED segment and signal is shown in the next page.				
D06 – P	attern run monitor						
0	Step number		Displays the current operation step number.	0			
1	Remaining time	Hrs	Displays the remaining time of current step.	0			
D07 – P	ump operation status mon	itor					
0	Pump operation status		Displays the ON/OFF status of the pumps	0			
			The correspondence of each LED segment and signal is shown below.				
1	Next ON pump No.		"0" is displayed when all pumps are ON	0			
2	Next OFF pump No.		"0" is displayed when all pumps are OFF	0			
3	Passage time	Hrs	Displays the continuous ON /OFF time of the current pump. It is cleared when the pump operation is changeover	0			


Pump operation status conitor (D07-0)

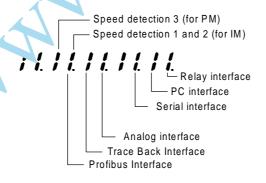

Sequence input (D04-0)


Sequence input (D04-1)


Sequence input (D04-2)

equence output (D04-3)

Sequence output (D04-4)



Upper line: Steps required for tuning Lower line: indication of completed steps

Automatic tuning progresion (D22-0)

Monitor parameters list

No.	Parameter	Parameter Unit Remarks			Application				
				ST	V/f	VEC	PM		
D11 – T	orque setting								
0	Torque setting	%	The currently selected torque setting is displayed.			0	0		
1	Analog torque setting	%	The setting value from the analog torque input is displayed.			0	0		
2	Serial communication torque setting	%	The setting value from the serial communication torque input setting is displayed.			0	0		
3	Operation panel torque				0	0			
4	ASR output % The ASR output is displayed.				0	9			
5					0	Го 			
D12 – S	? – Slip								
0	Slip	%	The slip is displayed as a percentage in respect to the base speed.			3			
D20 – E	Extended monitor								
0	Fault history reading entry		The last four fault history will display when SET is pre-1.	U					
2	Non-default value parameter list mode entry		The parameters that differ from the default factory sattiles are	0					
	parameter net mede entry		displayed when key SET is pressed.						
D21 – N	Maintenance monitor								
0	Cumulative Power On time	Hrs	Displays the cumulative power ON time	0					
1	Cumulative run time	Hrs	Displays the cumulative run time.	0					
2	CPU version		Display the CPU serial number	0					
3	ROM version		Display the ROM serial num'er.	0					
D22 – A	Automatic tuning								
0	Automatic tuning progression display		Displays the progres on on the utomatic tuning.		0	0			
D30 – F	lardware monitor								
0	Inverter type		This indicates the inverter type	0					
1	1 Option PCB This indicates be ounted optional PCB. The correspondence of the LED signals is shown below								

6-2 Block-A parameters

The parameters used most frequently have been grouped in Block-A.

Block-A parameters list

No		Parameter	Unit	Default	Min.	Max.	Function	_ /	Appli	plication	
								ST	V/f	VEC	PM
A00	– F	requency setting									
	0	Local frequency setting	Hz	10.00	0.10	Max. frequency	This is the frequency set from the operation panel.		0		
	1	Frequency setting for jogging	Hz	5.00	0.10	Max. fre- quency	This is the frequency setting for jogging.		0		
_	2	Local speed setting	min ⁻¹	300.0	-Max. speed	Max. speed	This is the speed set from the operation panel.			3	6
	3	Speed setting for jogging	min ⁻¹	100.0	-Max. speed	Max. speed	This is the speed setting for jogging.				0
A01	– A	cceleration/deceleration	on time								
	0	Acceleration time – 1	sec	10.0	0.1	6000.0	This is the time to reach the max. frequency or max. speed from	0			
	1	Deceleration time – 1	sec	20.0	0.1	6000.0	This value can be set x0.1 x10 units by setting the paramete. \$10-5 accordingly.	0			
A02	– T	orque boost	u.	u .							
	0	Manual torque boost selection		2.	1.	2.	1: Disable = ' Enal e		0		
	1	Automatic torque boost selection		1.	1.	2.	1: Disaci - 2 Encisio		0		
	2	Manual torque boost setting	%	Inverter rating	0.0	20.0	T is is the boost voltage at 0Hz. The automatically adjusted by the tomatic tuning.		0		
	3	Square reduction torque setting	%	0.0	0.0	25.	This is the reduced voltage at half of base frequency.		0		
_	4	R1 drop compensation gain	%	50.0	0.0	10′.0	This is the voltage compensation because R1 drop		0		
_	5	Slip compensation gain	%	0.0	0.0	20.0	This is the motor's rated slip. This is automatically adjusted by the automatic tuning.		0		
	6	Maximum torque boost gain	%	0.0	0.0	50.0	This is automatically adjusted by the automatic tuning.		0		
A03 -	– D	C Brake									
	0	DC braking voltage	%	Inverter rating	0.1	20.0	This is automatically adjusted by the automatic tuning.		0		
_	1	DC braking 'ime	ec	2.0	0.0	20.0		0			
	2	DC braking current	%	50.	0.	150.				0	0
A04	– C	ustom paramevers	1	1	1			1	1	ı	ı
	0 1 2 3	Custom = 0 = 1 = 3					Set the parameter Nos. to be displayed in this block in C10-0~7.	0			
X	4 5 6	-4 -5 -6									
	1	-7									
A.J5	– B	lock B, C parameter sl	kip								
_	0	Extended setting		2.	1.	2.	= 1 : Display, = 2 : Skip	0			
	1	Software option function		2.	1.	2.	= 1 : Display, = 2 : Skip	0			
	2	Hardware option function		2.	1.	2.	= 1 : Display, = 2 : Skip	0			

6. Control Functions and Parameter Settings

Block-A parameters list

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	catio	n
							ST	V/f	VEC	PM
A10 – A	SR control constant 1									
0	ASR response	rad/s	20.0	1.0	200.0	This is the required ASR response in radian/sec.			0	0
1	Machine time constant1	ms	1000.	1.	20000.	This is the time to accelerate the motor + load to the base speed at the motor rated torque.			0	0
2	Integral time constant compensation coefficient	%	100.	20.	500.	This is a compensation coefficient for the Integral time constant in the speed regulator.			0	0
3	ASR drive torque limit	%	100.0	0.1	300.0	These are the drive and regenerative			C	9
4	ASR regenerative torque limit	%	100.0	0.1	300.0	torque limit values for ASR operation. (Speed Control)			O	O
5	Emergency stop regenerative torque limit	%	100.0	0.1	300.0	This is the regenerative torque limit used during the emergency stop (EMS)			0	0
A11 – A	CR control constant									
0	ACR response	rad/s	1000.	100.	6000.	The ACR gain and time constant re			0	
1	ACR time constant	ms	20.0	0.1	300.0	set. This will affect the current rispinse. If the gain is too low or too inh, the current will become unstable and the over current protection. If furthion. Normally adjust the response between 500 miles 100 and the time constant between 5 and 20ms.			0	
	ACR drive torque limit	%	100.0	0.1	300.0	Drive ariu reger rative torque limit			0	0
3	ACR regenerative torque limit	%	100.0	0.1	300.0	values for Λος ομ ration. (Τυι que Control)			0	0
	CR control constant (F	Permaner	t Magnet	Motors)						
0	ACR response (PM)	rad/s	1500	100.	600 J.	These are the gain and time constant				0
1	ACR time constant (PM)	ms	10.0	0.1	30. 1	to the current regulator (ACR) This will affect the current response. If the gain is too low or too high, the current will become unstable, and the VAT2000 may trip by overcurrent. In general, adjust the response between 500 and 1000, and the time constant between 5 and 20ms.				0
2	d axis current command ramp time	ms/l1	10.0	0.1	100.0	This is the ramp setting to prevent instability caused by overshooting, etc when current command changes				0
3	q axis current command ramp time	ms/l1	0.0	0.1	100.0	suddenly. Set usually a value of 5-10 ms				0

6-3 Block-B parameters

The Block-B parameters are divided into the basic functions, extended functions and software option functions.

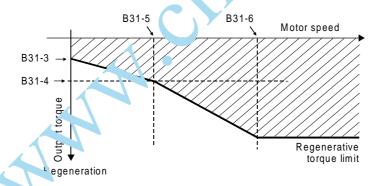
Block-B parameters (Basic function of V/f control) list

No.	Parameter	Unit	Default	Min.	Max.		Fun	ctio	n			Annli	catio	n
.10.	i diametei	Jiii	Delauit		WIGA.		ı uli	5.10	••		ST		VEC	_
B00 – C	Uutput rating				1	1					· ·	-/-	10	
0	Rated input voltage		7.	1.	7.	Select	Select the rated input voltage from the			0				
	setting					following table.								
				Drives (up to U2	KN37K0	N37K0 or U2KX45K0		Drives Larger		than	U2X	45K0	A
						200V	400V			200	٧	40)0V	
				Value		ystem	System		Value	Syste	em			
		_	this data is	🗀	1	200V	380V		1	200	V	30	JOV	
			ed, the outp e data will b		2	200V	400V	l l	2	200	V	40	00V	1
			ed to the			200V	415V		3	220				4
		_	same value.			220V	440V		4	220			IOV_	4
						230V	460V	-	5	200			80V	-
						230V 230V	480V 400V		6	230			00V 00V	-
					/	230 V	400 V	l L		2. 7	v j	40	JO V	
1	Max./base frequency		1.	0	9		the output f			ing		0		
	simple setting			<u> </u>	<u> </u>	from th	ne combinati	n k	. W.		<u> </u>	<u> </u>	<u> </u>	_
			Value	Ftrq (Hz		Fmax (F		_		trq (Hz)	F	Fmax		
			0 F	ree setting	on B00-4)-5		6 7	60		70 80		
		-	2	50 60		60 8					90			
			3	50		50		3/2	9			12	0]
			4			75								
		L	5	ı							1			
2	Motor rated output	kW	Inverter rating	0.10	50(1)0	notor	rated power	at tl	he base	speed.		0		
3	Rated output voltage	V	200	39.	480.	This is	the rated mo	otor \	oltage. w	vhich		0		
	· · · · · · · · · · · · · · · · · · ·	-	/400.			can no	t be set to a l	arge	er value th					
				4	input voltage set in The Automatic Voltage					DO				
							oes not opera							
						(then the	he output vol	tage	equals th					
				4		voltage	e at the base	freq	uency.)					
4	Max. frequency	Hz	50.0	3.0	440.0	W/hen	"B00-1" is a	valı	ie other	than 0		0		
5	Base frequency	The	50.0	1.0	440.0		values will b					0		
l	, ,	1	30.0	1.0	++0.0	data s	et in B00-1					Ľ		
6	Motor rated current	Α	Inverter	Inverter	Inverter		vercurrent lin					0		
			rating	rating × 0.3	rating		y and meter setting	outp	out. are r	erated				
7	Carrier fr equer cy		17.0	1.0	21.0	_	oise can be l	owe	red by			0		
	(Drives up to					chang	ing the PWN	1 car	rrier freq	•				
	U2K1 37K0 or						ontrol metho und generat							
	U2KX45K0)						an be chang							
A						1.0-1	5.0: Monoto	ne s	sound m	ethod				
K							rier frequenc -18.0: Soft s							
K							rier frequenc							
						18.1	to 21.0:Soft	sou	ınd meth	od 2				
	Carrior fragues as		10.0	1.0	140		rier frequence. 3.0: Monotor					_		
, ,	Carrier frequency (Drives larger than		10.0	1.0	14.0		rier frequenc					0		
	U2KX45K0)					8.1-1	1 1.0: Soft so	und	method	1				
	, 						rier frequenc to 14.0:Soft							
							rier frequenc							
						(Carı	rier frequenc	y: 2	.1 to 5.0l	kHz)				L

Block-B parameters (Basic function of vector control) list

No.	Parameter	Unit	Default	Min.	Ma	x.	Fur	ctio	on		Α	pplic	atio	ı
											ST	V/f	VEC	PM
B01 – C	Output rating													
0	Rated input voltage setting		7.	1.			ect the rated in wing table.	put	voltage fr	om the			0	0
				Drives	up to U	2KN37K	N37K0 or U2KX45K0 Drives Larger than					U2X4	_	
						200V	V 400V			200V		40	OV	
		When th	is data is	٧	/alue	System			Value	Syste		Sys		1 1
			I, the outp	ut 📙	1	200V	380V	ļ	1	200\		38		
			data will b		2	200V	400V	ŀ	2	200\		40		
		changed			3	200V	415V	ł	3 4	220\		41:		
		same va	lue.		5	220V 230V	440V 460V	ł	5	220\ 230\		440	_	
					6	230V	480V	l	6	230\		46		
					7	230V	400V	İ	7	230\		40		1 1
	Motor roted cutout	144	Investor	0.10	F00	00 Mat	or roted name		iba basa s			-		_
1	Motor rated output	kW	Inverter rating	0.10			or rated power	at	me base s	speed	2		0	0
_2	No. of motor poles	Pole	4.	2.	-	6.							0	0
3	Rated output voltage	V	200 /400.	40.	48		s is the motor r e speed, full lo		d vr \age a	aı			0	0
4	Max. speed	min ⁻¹	1800.	150.	720		s is the max. m			Hz.			0	0
5	Base speed	min ⁻¹	1800.	150.	720	What		controlled above during vector					0	0
6	Motor rated current	А	Inverter rating	Inverte rating × 0.3	r Inver	ter This	s is theotor of d at the base s	urre	ent during	full			0	0
7	Carrier frequency (Drives up to U2KN37K0 or U2KX45K0)		17.0	1.0		cha and the This 1.	noise can be lowered by changing the PWM carrier frequency and control method, which affects to the sound generated from the motor. This can be changed while running. 1.0 to 15.0: Monotone sound method (Carrier frequency: 1.0 to 15.0kHz) 15.1 to 18.0: Soft sound method 1 (Basic carrier frequency: 2.1 to 5.0kHz) 18.1 to 21.0: Soft sound method 2 (Basic carrier frequency: 2.1 to 5.0kHz)					0	0	
	Carrier freq iency (Drives large, than U2KX45.(0S)		10.0	1.0		8. 11 So	0 to 8.0: Monotone sou frequency: 1.0 1 to 11.0: Soft sound me carrier frequer 1.1 to 14.0: oft sound methequency: 2.1 to	to etho ncy: od 2 o 5.0	8.0kHz) d 1 (Basic 2.1 to 5.0 2 (Basic c 0kHz	c OkHz) arrier			0	0
8	N of encoder pulses	P/R	1000.	60.		sen	s must be set in						0	0
9	No-load output voltage	V	160.	20.	50	the	s is the voltage base speed.		Ü	ad at			0	0
		<u> </u>	<u> </u>			Adjı	usted by Auto-	uni	ng					

No.	Parameter	Unit	Default	Min.	Max.	Function	Δ	Appli	catio	n
							ST	V/f	VEC	PM
B02 – N	Notor circuit constant (I	M)								
0	R1:Primary resistance (Mantissa section)	mΩ	Inverter rating	0.100	9.999			0	0	
1	R1:Primary resistance (Exponent section)		Inverter rating	-3	4			0	0	
2	R2': Secondary resistance (Mantissa section)	mΩ	1.000	0.100	9.999				0	
3	R2': Secondary resistance (Exponent section)		0	-3	4	This combination means $R2' = 1.000 \times 10^{0} \text{ (m}\Omega)$			0	
4	Lσ: Leakage inductance (Mantissa section)	mH	1.000	0.100	9.999			C		
5	L _O : Leakage inductance (Exponent section)		0	-3	4	The motor circuit constant is set.			0	
6	M': Excitation inductance (Mantissa section)	mH	1.000	0.100	9.999	~ C			0	
7	M': Excitation inductance (Exponent section)		0	-3	4				0	
8	Rm: Iron loss resistance (Mantissa section)	mΩ	1.000	0.100	9.999				0	
9	Rm: Iron loss resistance (Exponent section)		0	-3	5				0	
B03 – N	Notor circuit constant (I	PM)								
0	R1: PM motor primary resistance (Mantissa section)	mΩ	1.000	0.001	9 19	This combination means				0
1	R1: PM motor primary resistance (Exponent section)		0	-1		R1 = $1.000 \times 10^0 \text{ (m}\Omega)$	Î			
2	Ld: PM motor d axis inductance (Mantissa section)	mH	1,000	2 201	9.999					0
3	Lq: PM motor q axis inductance (Mantissa section)	m⊬í	1.000	0.001	9.999	This combination means R1 = 1.000 x 10 ⁰ (mH)				
4	Ld, Lq PM motor inductance (Exponent saction)	1	0	–1	4					
B05 – F	requency skip		1	1	1	<u>l</u>				\dashv
0	Skip frequency - 1 Skip ' and - 1	Hz Hz	0.1 0.0	0.1 0.0	440.0 10.0			0		
2	Skip frequency – 2	Hz	0.1	0.1	440.0					
3	Skip. and -2	Hz	0.0	0.0	10.0					
4	`kip frequency – 3	Hz	0.1	0.1	440.0					
	Sk., band - 3	Hz	0.0	0.0	10.0					
1. 76 - h	.io in erlock setting									
	Coefficient		1.000	-10.000			0			
1	Bias	Hz	0.0	-440.0	440.0	The upper limit must be larger than		0		
2	Upper limit	Hz	440.00	-440.0	440.00	the lower limit.				
3	Lower limit	Hz	0.10	-440.0	440.00	The common limit many the leaves the				
4	Bias	min ⁻¹ min ⁻¹	0.	-7200.	7200.	The upper limit must be larger than the lower limit.			0	
5 6	Upper limit	min min ⁻¹	7200. 7200	-7200.	7200. 7200	and tower mine.				
6	Lower limit	111111	−7200 .	−7200 .	7200.					


No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	cation	ı
							ST	V/f	VEC	PM
	cceleration/deceleration	on time	ı		ı			ı		
0	Acceleration ramp time-2	sec	10.0	0.1	6000.0	This acceleration/deceleration ramp time is valid when the ramp 2 selection is ON (CSEL=ON).	0			
1	Deceleration ramp time-2	sec	20.0	0.1	6000.0	This is the time to reach the max. frequency or max. speed from 0				1
						This value can be set x0.1 or x10 units by setting the parameter B10-5 accordingly.				A
2	Acceleration ramp time for jogging	sec	5.0	0.1	6000.0	This is the acceleration/deceleration time value when the JOG sequence	0			
3	Deceleration ramp time for jogging	sec	5.0	0.1	6000.0	(F JOG, R JOG) is ON. This value can be set x0.1 or x10 units by setting the parameter B10-5 accordingly.				
4	S-shape characteristics (Ts)	sec	0.0	0.0	5.0	Set to 1/2 of less of the ramp time. S-type ramp time is allowed by setting this parameter.	°			
5	Time unit		1.	1.	3.	The acceleration/deceleration amp time setting unit can be changed using a multiplier.	0			
D44 B		1) 11				1: x1; 2: x0.1; 3: x1 J				
B11 - P	Program frequency (spe Program frequency	ea) setti %	ng 10.00	0.00	100.00	(1) Binary se ect 1. 10e (B11-8=1)				
1	(speed) –0 Program frequency	%	10.00	0.00	100.00	Sequence ommand Selected SE S3 S2 S1 S0 freq.				
2	(speed) –1 Program frequency	%	10.00	0.00	100.00	OFF OFF ON B11-1	0			
3	(speed) –2 Program frequency	%	10.00	0.00	100.0	OFF ON OFF B11-2 OFF ON ON B11-3				
4	(speed) –3 Program frequency (speed) –4	%	10.00	0.00)0.0€	ON OFF OFF B11-4 ON OFF ON B11-5				
5	Program frequency (speed) –5	%	10.00	0.00	100 0	ON ON OFF B11-6 ON ON ON B11-7 SE and S3 are not used				
6	Program frequency (speed) –6	%	10.00	0.00	100.00	(2) Direct select mode (B11-8=2)				
7	Program frequency (speed) –7	%	10.	0.00	100.00	Sequence Command Selected SE S3 S2 S1 S0 freq.				
						OFF OFF OFF OFF ON B11-0				
						OFF OFF ON OFF B11-1				1
						OFF OFF ON OFF OFF B11-2				
						OFF ON OFF OFF OFF B11-3 ON OFF OFF OFF OFF Latest value				
	\ \ \					ON OFF OFF OFF ON B11-4				
	• \ '					ON OFF OFF ON OFF B11-5				
_	•,					ON OFF ON OFF OFF B11-6 ON ON OFF OFF OFF B11-7				
X	R					When S0 to S3 are all OFF the latest frequency set value is hold. After power ON that goes to "0"				
ρ	Selection mode setting		1.	1.	2.	= 1 : Binary mode = 2 : Direct select mode Select the program frequency setting	0			
						(B11) and program ramp (B41, B42) selection mode.				

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	catio	n
							ST	V/f	VEC	PM
B13 – L	ocal setting									
0	Torque setting	%	100.0	-300.0	300.0	Torque setting from the keypad			0	0
1	Torque ratio 1 setting		1.000	0.001	5.000				0	0
2	Torque bias 1 setting	%	0.0	-300.0	300.0				0	0
3	Torque ratio 2 setting		1.000	-5.000	5.000				0	0
4	Double rating speed ratio	%	100.0	0.1	100.0	This sets the torque limit reduction			0	d
	setting					pattern changeover point. Set as a percentage in respect to the base speed.				
5	Drooping setting	%	0.00	0.00	20.00	By adjusting this parameter, the motor torque/speed characteristics can be achieved.				ò
6	ASR gain compensation in constant power range	%	100.0	0.0	150.0	This sets the ASR P gain compensation value at the max. speed. By adjusting this parameter, the ASR P gain can be compensated in the constant power range. If ASR hunting occurs in the constant power range, (with sensor-less vector control) set a smaller value.			0	0
7	ACR gain compensation in constant power range	%	100.0	0.0	150.0	This sets the ACR P gail compensation value of the cax, speed. By adjusting this parameter, the ACR P gain can be compensated in the constant power in nge.			0	0
B14 – A	SR dead band setting									
0	ASR dead band setting	%	0.0	0.0	100.0	The normalist is range of the ASR in ut is set.			0	0
B15 – N	lachine time constant set	ting 2		1						
0	Machine time constant 2	ms	1000.	10.		s the time to accelerate the motor + load to the base speed at the motor rated torque. This is valid when the sequence input machine time constant changeover is ON (MCH = ON).			0	0
B17 – V	//f middle point		1							
0	Frequency 2	Hz	1	0.0	Max.freq.	These parameters should be set:		0		
1	Voltage 2	%	0.7	0.0	100	<u> </u>		0		
2	Frequency 1	Hz	0.0	0.0	Max.freq.			0		
3	Voltage 1	-	0.0	0.0	100			0		
	Over current limit	<u>~</u> ~	0.0	0.0	100	.0		U		
0	Over current limit	%	150.	100.	200		0			
1	Regenerative current limit	%	10.	5.	300. 300.	Set to 10% if there is not DBR.	0			
2	Torque tabilitation ga		1.00	0.	4.00	Increase if the motor vibrates.	0			
3	Over current lin it function gain		0.25	0.	2.00	Decrease if current hunting occurs.	0			
4	Current stab lisation gain		0.25	0.	2.00		0			
5	ove. current break-down prevenion gain		1.00	0.	2.00		0			
6	Corcurrent stall pre- vanu n time constant		100.	10.	1001.	P control will be applied if 1001 is set.	0			
P 3-4	utomatic tuning function									
U	Automatic tuning selection		0.	0.		The automatic tuning mode is selected. 0: Disabled (Normal running mode) 1: Basic tuning for V/f Control 2: Extended tuning for V/f Control 3: Basic tuning for Vector Control 4: Extended tuning for Vector Control 5: Load mode (check chapter 3-6-2)		0	0	

No.	Parameter	Unit	Default	Min.	Max.	Function		Appli	catio	n
							ST	V/f	VEC	PM
	Automatic tuning functi							1	ı	1
1	Initial proportional compensation gain	%	100.	0.	500.	Autotuning initial settings. If Autotuning is completed incorrectly		0	0	
2	Initial time constant compensation gain	%	100.	0.	500.	change initial settings and try again. Increase these values in 50% steps		0	0	
B20 -	Output rating (Dual driv	e)		1	,		-	1		1
0	Max./base frequency simple setting		1.	0	9	Select the output frequency rating from the following table.	0			A
		Va	lue	Ftrq (Hz)	F	max (Hz) Value Ftrq (Hz)	Fn	nax (H	z)	
					n B00-4 a	, ,		70	7	
			1	50		50 7		20		
			3	60 50		60 60 8 9		70 12		
			4	50		75				
			5			100				
1	Rated output voltage	V	200	40.	480.	The Automatic Voltage regulato DC-	7			
			/400.			AVR, is always enabled, some studies voltage is attained at the bank				
						frequency.	0			
						This is the rated mor vol. ae, which				
						can not be set to a larger value than the)			
	Max. frequency	Hz	50.0	3.0	440.0	input voltage s st in 20-c. When "B20-c is a value other than 0	. 0			
3	Base frequency	Hz	50.0	1.0	440.0	these values with the	·			
	Base frequency	112	30.0	1.0	440.0	data se0	Ŭ			
4	Motor rated current	Α	Inverter	Inverter	Inverter	The overcurrent limit, OLT, current %				
			rating	rating × 0.3	rating	d splay and meter output, are related to etting	0			
5	Carrier frequency		17.0	1.0	0	noise can be lowered by				
	(Drives up to					changing the PWM carrier frequency				
	U2KN37K0 or				((and control method, which affects to				
	U2KX45K0)					the sound generated from the motor. This can be changed while running.				
			,	1		1.0-15.0: Monotone sound method	0			
						(Carrier frequency: 1.0 to 15.0kHz)				
						15.1-18.0: Soft sound method 1 (Carrier frequency: 2.1 to 5.0kHz)				
						18.1 to 21.0: Soft sound method 2				
						(Carrier frequency: 2.1 to 5.0kHz)				
	Carrier frequency		,0.0	1.0	14.0	1.0-8.0: Monotone sound method (Carrier frequency: 1.0 to 15.0kHz)				
	(Drives larger than					8.1-11.0: Soft sound method 1				
	U2KX45K0)					(Carrier frequency: 2.1 to 5.0kHz)	0			
						11.1 to 14.0: Soft sound method 2				
D04	Fraguency action (Pro-	Drive			<u> </u>	(Carrier frequency: 2.1 to 5.0kHz)				
B21 –	Frequency setting (Dual	Drive) Hz	10.00	0.10	Max.fre-	This is the frequency set from the	То			
	setting	114	10.00	0.10	quency	operation panel.				
1	rency setting for	Hz	5.00	0.10	Max.fre	This is the frequency setting for	0			
<u></u>	oggin				-quency	jogging.				
Bi	Ac leration/deceleration			<u> </u>	T = = =			1	1	1
	Acceration ramp	sec	10.0	0.1	6000.0	This is the time to reach the max. frequency or max. speed from 0				
	Deceleration ramp time-1	sec	20.0	0.1	6000.0	This value can be set x0.1 or x10 units by setting the parameter B10-5	0			
2	Acceleration ramp	sec	5.0	0.1	6000.0	This is the acceleration/deceleration				
_	time for jogging			0.4	6000.0	time value when the JOG sequence (F JOG, R JOG) is ON.				
3	Deceleration ramp time for jogging	sec	5.0	0.1	6000.0	This value can be set x0.1 or x10	0			

No.	Parameter	Unit	Default	Min.	Max.	Function	1	Appli	catio	n
							ST	V/f	VEC	PM
B23 – T	orque Boost (Dual Drive)									
0	Manual torque boost voltage	%	Inverter rating	0.0	20.0	This is the boost voltage at 0Hz.	0			
1	Square reduction torque setting	%	0.0	0.0	25.0	This is the reduced voltage at half of base frequency.	0			
B24 – D	C Brake (Dual Drive)									
0	DC braking voltage	%	Inverter rating	0.1	20.0		0			
1	DC braking time	sec	2.0	0.0	20.0		0			
B25 – C	Overcurrent limit (Dual Dri	ve)								
0	Overcurrent limit	%	150.	50.	300.		0			
1	Regenerative current limit	%	10.	5.	300.	Set to 10% if there is not DBR.	0			
2	Torque stabilisation gain		1.00	0.	4.00	Increase if the motor vibrates.	0			
B30 – S	peed control extended fu	nction			•					
0	Load torque observer gain		0.	0.	200.	This is the gain for the load to quadobserver. To increase the response characteristic from an ext mal disturbance, set a late a gai. Note that if the gain is a too high, the output tormine could start hunting. When set to zero, the lad torque observer we not full ction.			0	0
1	Model machine time constant	ms	500.	10.	20000	Set the model constant used a pad rque observer.			0	0
2	ASR proportional change rate limit	%	50.0	1.0	400.0	'r trie speed setting value or motor poed change suddenly, this will possible the ASR's, P response, from suddenly changing.			0	0
3	LPF time constant for Speed setting	ms	0.	0	10、7.	7 nis filter is used to suppress overshooting, by setting a time constant equivalent to the speed response.			0	0
4	LPF time constant for Speed detection	ms	2.	C	1000.	This filter is used to suppress the noise in speed detection.			0	0
5	LPF time constant for Speed detection ASR	ms		0.	1000.	This filter is used for the speed detection in the ASR.			0	0
6	LPF time constant for flux compensation	ris	20.	0.	1000.	This filter affects the speed detection used in constant power or iron loss compensations, etc.			0	0
7	LPF time constant for actual Torque setting	ms	0.	0.	1000.	Set the low path filter time constant used for the torque current command.			0	0
8	LPF time constant for droopin a	ms	100.	0.	1000.	Set the low path filter time constant used for drooping value input into the speed regulator.			0	0

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	catio	n
							ST	V/f	VEC	PM
B31 – S	Sensor-less control function									
0	Flux observer gain		1.20	0.50	2.00	This is the gain for flux observer feedback. If in the high-speed operation range, occurs hunting at the estimated speed, adjust within the range of 1.2 to 0.9.			0	
1	Speed estimated proportional gain	%	0.00	0.00	100.0	This is the proportional gain for the adaptive speed estimation algorithm. To increase the speed estimation response, set a large value. Note that if the value is too high, the speed estimation value will hunt.			0	
2	Speed estimated integral gain	%	1.00	0.00	100.0	This is the integral gain for the adaptive speed estimation algorithm. To increase the speed estimation response set a large value. Note that if the value is too high, the speed estimation value will hunt.		•		
3	Regenerative compensation torque limit 1	%	10.0	0.1	100.0	The regenerative torq limit can be changed in the lo				
4	Regenerative compensation torque limit 2	%	20.0	0.1	100.0	speed area. The shall d area shows the grain range. If the corration is unstable at a			0	
5	Regenerative compensation low-speed area setting 1	%	10.0	0.1	100.0	point seche compensation li nits to kee, the unstable				
6	Regenerative compensation low-speed area setting 2	%	20.0	0.1	100.0	region oit the liaded area				

Regenerative compensation (B31-3, 4, 5, 6)

No.	Parameter	Unit	Default	Min.	Max.	Function			catio	
							ST	V/f	VEC	PM
B32 – V	ector control compensation	selectio								
0	High speed flux control selection		1.	1.	2.	1: Disable 2: Enable This is the control selection for magnetising the secondary flux to a high speed when starting operation. Select this to increase the motor speed even slightly when starting operation.			0	
1	Temperature compensation selection		1.	1.	2.	1: Disable 2: Enable This is to compensate fluctuation of R1, R2 motor constants caused by changes in the motor's temperature. Useful if high torque accuracy is required when (C30-0 = 4), or if high speed accuracy is required in sensor-less operation (C30-) = 3),			0	
2	Voltage saturation compensation selection		2.	1.	2.	1: Disable 2: Enable This function is useful if the output voltage is larger than the voltage that care 'e out, it by the inverter, c'when the input voltage, and enable input voltage, and enable input voltage inhanges, limiting the exciting cirrent to prevent the current or eque instability. If there is voltage saturation, a high ripple in the torque will or ur. In this case, lower the pul-9 setting to avoid this.			0	0
3	Iron loss compensation selection		1.	<u> </u>	2	1: Disable 2: Enable This compensates the torque error caused by iron loss. The iron loss resistance value (B02- 8, 9) must be set.			0	
4	ACR voltage model FF selection	N		1.	2.	1: Disable 2: Enable The voltage fluctuation caused by the leakage inductance is feed forward controlled. The current regulator (ACR) response will be increased. Select this if the current hunts in the high-speed operation range during sensor-less control.			0	0

No.	Parameter	Unit	Default	Min.	Max.	Function		Appli	catio	n
							ST	V/f	VEC	PM
333 –	M fluctuation compensation		erence sp	eed						
0	Table reference speed 0	min ⁻¹	200	100.	7200.	This is the reference speed			0	
_1		min ⁻¹	400	100.	7200.	table.				
_ 2	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	min ⁻¹	600	100.	7200.	These values will be affected by the compensation (B34) block.				
3	Table reference speed 3	min ⁻¹	800	100.	7200.	and dempendation (201) block.				
4		min ⁻¹	1000	100.	7200.					
5		min ⁻¹	1200	100.	7200.					
6	Table reference speed 6	min ⁻¹	1400	100.	7200.					
7	Table reference speed 7	min ⁻¹	1600	100.	7200.					
B34 –	M fluctuation compensation									
0	coefficient 0	%	100.0	50.0	150.0	This is adjusted with the				
1	M fluctuation compensation coefficient 1	%	100.0	50.0	150.0	automatic tuning mode 4 (B19-0 = 4).				
2	coefficient 2	%	100.0	50.0	150.0	This compensates the exciting inductance fluctuation according				
3	coefficient 3	%	100.0	50.0	150.0	to the B33 reference speed values.			0	
4	M fluctuation compensation coefficient 4	%	100.0	50.0	150.0	Set the compensation coefficients that the comput voltage is constant during no-				
5	M fluctuation compensation coefficient 5	%	100.0	50.0	150.0	load operation throwth the entire operation range.				
6	M fluctuation compensation coefficient 6	%	100.0	50.0	150.0					
7	M fluctuation compensation coefficient 7	%	100.0	50.0	150.0	G				
B35 –	Constant Voltage control (PM	1)	•					•		
0	Demagnetizing control operation voltage range	%	10.0	50.0	100 0	o/ of rated voltage				С
1	Demagnetizing current limit value	%	50.0	10.0	2007	Ratio of rated voltage				С
2	Demagnetizing proportional gain	times	0.10	0.01	૬ 7.99					С
3	Demagnetizing integral gain	ms	10.		1000.					С
4	Flux temperature fluctuation compensation range	%	0.0	0.0	50.0					C
5	Flux temperature fluctuation compensation time constant	%	1000.	1.	9999.					C
B36 –	Demagnetizing current table	(Ph.,								
0	Demagnetizing current table 0	%	0.0	0.0	100.0	Demagnetising current table (at torque command 25%)				C
1	Demagnetizing currol table 1	%	0.0	0.0	100.0	(at torque command 50%)				С
2	Demagnetizing current	%	0.0	0.0	100.0	(at torque command 75%)				С
3	Demagnet zing current table	%	0.0	0.0	100.0	(at torque command 100%)				С
4	Demagnetizii g current	%	0.0	0.0	100.0	(at torque command 150%)				С

Block-B parameters (S/W option constants) list

No.	Parameter	otion function	1	Max.		Fu	nctio	n			Α	pplic	atio	1		
													ST	V/f	VEC	PM
	oftware option function	1		1	- 1	<u> </u>							,			
0	Function selection – 1		1	1	-	:	= 1: Follow = 2: Progra = 3: Patterr = 4: Traver	m ran n Run	np fun		not us	sed	0			
1	Function selection – 2		1	1		:	= 1: Follow = 2: PID = 3: PID, m	•				sed	0			
B41 – P	rogram ramp – acceler	ation		1			-						1	I		
0	Acceleration time - 0	sec	10.0	0.1	1 60	0.000	Select as fo	ollows	with \$	S0, S	1, S2,	S3				
1	-1	sec	10.0	0.1	1 60	0.000	and SE.									
2	-2	sec	10.0			0.000										
3	-3	sec	10.0	0.1		0.000							0			
4	-4	sec	10.0	0.1		0.000										
5	-5	sec	10.0	0.1		0.000										
6 7	-6 -7	sec	10.0	0.1		0.000										
	rogram ramp – deceler	sec	10.0	0.1	1 60	0.00					-	\longrightarrow 1				
0 0	Deceleration time – 0	sec	20.0	0.1	1 60	0.000							1	1		Г
1	– 1	sec	20.0			0.000										
2	-2	sec	20.0			0.000										
3	-3	sec	20.0	0.		0.000							0			
4	-4	sec	20.0	0.1		0.00		A								
5	-5	sec	20.0	0.1	1 60	0.000										
6	-6	sec	20.0	0.1	1 60	0.000				•						
7	-7	sec	20.0	0.1	1 60	0.000										
	The binary mode or direct input mode is selected with B11-8.		or Binar			7. 1		(1) Fo	or Dir	ect m	ode s	select	tion			
			equence			Se.					mma		-1	ected		
		SE	S3 S	FF OFF	S0	<u>rε mρ</u> 1 B41		SE	S3	S2	S1 OFF	S0	ram	o tim itest	е	
				FFIOFF	O.	B41		OFF	OFF	OFF	OFF	OFF		lues		
				FF OFF	UN	B41 B42	-1 -1				OFF		B4 B4	11-0 12-0		
				ON FF ON	OFF	B42	-2		OFF		ON OFF		B4	11-1 12-1 11-2		
				UN	ON	B41		OFF	OFF	ON		OFF		+ 1 - 2 12 - 2		
			C		OFF	B41 B42		OFF			OFF			11-3 12-3		
	, 143			N OFF		B42	-5	ON			OFF		va	test lues		
				N ON	OFF	B42	-6	ON		OFF	OFF ON		B4	11-4 12-4		
	• \ \			N ON	ON	B41 B42		ON			OFF		B4	11-5 12-5 11-6		
N.A		SE a	nd S3 ar	e not use	ed			ON			OFF		B4	12-6 11-7		
								5.11						12-7		
	,							time	set va	lue is		After	the la powe			

Block-B parameters (S/W option constants) list

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	catio	n
							ST		VEC	
B43 -	PID Control	,			•					
0	Proportional Gain		1.00	0.01	10.00		0			
1	Integral time cons	stant sec	10.0	0.0	30.0		0			
2	2 Differential time	sec	0.000	0.000	1.000		0			
	constant									
3	3 Upper limit	%	100.	50.	100.	The maximum frequency (B00-4) and maximum speed (B01-4) are 100%	0			L
4	Lower limit	%	0.	0.	50.		0			
B44 –	Multi-pump contro	<u> </u>	T	ı	,					
0	No. of controlled pumps	units	3.	1.	5.	Set the No of pumps to be ON / OFF controlled	0			
1	Holding time	sec	60.	3.	3600.	When the PID output reaches either Lower or Upper limit longer that the time set, one of the pumps is switch OFF or ON	0			
2	Continuos operati limit time	ion Hrs	8.	2.	48.	This is maximum time allowed for running a pump. The pumps will rotate so the operating time of each pump is equal.	0			
3	Changeover time	sec	3.	1.	120.	This is the OFF/ON the sition. Time between the pumps which are rotated.	0			
B45 –	Traverse run		•	•						
0	Centre frequency	(FH) %	20.00	5.00	100.00		0			
1	Amplitude	(A) %	10.0	0.1	20.0	Set (A) TH' 70	0			
2	2 Drop	(D) %	0.0	0.0	50.0	S et (J/A) x 100	0			
3	Acceleration time	(B) sec	10.0	0.5	60.0		0			
4	Deceleration time	(C) sec	10.0	0.5	60.0		0			
5	Deviated traverse	(X) %	10.0	0.0	20 7	St (X/FH) x 100	0			
6	Deviated traverse	(Y) %	10.0	0.0	20.0	Set (Y/FH) x 100	0			
B50 -	Pattern run step-0	(Automatic ru	ın)							
0) Mode)		0.	0 .	2.	= 0: Stop				
1	Frequency (speed	d) %	10.00	0.00	100.00	= 1: Forward run	0			
2	-	sec	1.0	0.1	6000.0	= 2: Reverse run				
B51 –	Pattern run step-1	(Automatic ru	ın'							
0) Mode)		0.	0.	2.	= 0: Stop				
1	, , , ,		17.00	0.00	100.00	= 1: Forward run	0			
	2 Time	St.		0.1	6000.0	= 2: Reverse run				
B52 –	Pattern run step-2	(Auton atic ru	_ _	1	1					
0	,		0.	0.	2.	= 0: Stop				
1	, , , ,		10.00	0.00	100.00	= 1: Forward run	0			
2	2 Time	sec	1.0	0.1	6000.0	= 2: Reverse run				
DE?	Detterrous as a second	(Autom : 1) =			<u> </u>	= 3: Return	<u> </u>			<u> </u>
	Patterr un s ep-3	(Automatic ru		^		_ 0: Stop	1			T
0	Frequency (speed	d) %	0. 10.00	0. 0.00	2. 100.00	= 0: Stop = 1: Forward run				
N	2 me	sec sec	1.0	0.00	6000.0	= 1: Forward run = 2: Reverse run	0			
	Recon destination		0.	0.1	2.	= 3: Return				
B5-	Pattern run step-4	(Automatic ru	ın)	<u>I</u>	1	<u> </u>	1			1
0	· · · · · · · · · · · · · · · · · · ·	,a.oa.io 10	0.	0.	2.	= 0: Stop				
1	. [d) %	10.00	0.00	100.00	= 1: Forward run				
					6000.0		0			
3		sec	1.0	0.1		= 2: Reverse run = 3: Return				
ı 3	Tretuin destination	ı	0.	0.	3.	= J. Reluiii	1		ĺ	

6. Control Functions and Parameter Settings

Block-B parameters (S/W option constants) list

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Appli	catio	1
							ST	V/f	VEC	PM
B55 – F	Pattern run step-5 (Auto	matic ru	n)							
0	Mode)		0.	0.	2.	= 0: Stop				
1	Frequency (speed)	%	10.00	0.00	100.00	= 1: Forward run				1
2	Time	sec	1.0	0.1	6000.0	= 2: Reverse run	0			1
3	Return destination step		0.	0.	4.	= 3: Return				
B56 – F	Pattern run step-6 (Auto	matic ru	n)							
0	Mode)		0.	0.	2.	= 0: Stop				
1	Frequency (speed)	%	10.00	0.00	100.00	= 1: Forward run				
2	Time	sec	1.0	0.1	6000.0	= 2: Reverse run	0			
3	Return destination step		0.	0.	5.	= 3: Return				
B57 – F	attern run step-7 (Auto	matic ru	n)							
0	Mode)		0.	0.	2.	= 0: Stop				
1	Frequency (speed)	%	10.00	0.00	100.00	= 1: Forward run				1
2	Time	sec	1.0	0.1	6000.0	= 2: Reverse run	0			1
3	Return destination step		0.	0.	6.	= 3: Return				
B58 – F	Pattern run step-8 (Auto	matic ru	n)							
0	Mode)		0.	0.	2.	= 0: Stop				
1	Frequency (speed)	%	10.00	0.00	100.00	= 1: Forward r				1
2	Time	sec	1.0	0.1	6000.0	= 2: Reverse un	0			1
3	Return destination step		0.	0.	7.	= 3: Return				Ì
B59 – F	Pattern run step-8 (Auto	matic ru	n)							
0	Mode)		0.	0.	2.	= 1: Stor				
1	Frequency (speed)	%	10.00	0.00	100.00	-1: r orward run				ı
2	Time	sec	1.0	0.1	600L 7	= Reverse run	0			ı
3	Return destination step		0.	0.	8.	= 3: Return				

6-4 Block-C parameters

The Block-C parameters are divided into the basic functions, extended functions and hardware option functions.

Block-C parameters (Basic function constants) list

No.	Parameter	Unit	Default	Min.	Max.	Function		Appli	cation	1
							ST	V/f	VEC	PM
C00 - C	control methods									
0	Run command method		1.	1.	3.	Run command method is set. = 1 : F·RUN, R·RUN = 2 : RUN, REV = 3 : Pulse (by Push-buttons) (Pulse inputs for F·RUN and R·RUN)	0			
1	RUN/STOP methods		2.	1.	2.	Set the stopping method for RUN operation. = 1 : Coast to stop = 2 : Ramp down to stop	0			
2	Jog stop method		2.	1.	2.	Set the stopping method for JCG operation. = 1 : Coast to stop = 2 : Ramp down to stop	S			
3	Emergency stop (EMS) input logic		1.	1.	2.	Emergency stop inr ut Paric is et. = 1 : Close to stop = 2 : Open to See	0			
4	Emergency stop (EMS) mode		1.	1.	3.	Set the stop, and me nod for the emergency sto, = 1 : (`cas') sto without a fault output = 2 : Coas, to stop with a fault output = 5 : Namp down to stop	0			
5	Control source switchover method (J1 setting)		1.	1.		St whether to validate the remote operation sequence for the local operation mode. Fig 5.2 = 1: Disables = 2: Enables	0			
6	Control source switchover method (J2 setting)		1.	1.	2.	Select the No. of auxiliary operation sequence input points when the COP command is ON. Fig 5.2 = 1 : Terminal block input = 2 : Serial input	0			
7	Run contact output condition selection		1.	1.	2.	The conditions for turning the sequence RUN output ON are set. = 1 : ON at pre-excitation = 2 : OFF at pre-excitation	0			
C01 - S	Start/stop frequency			•	1	T	1	1		
0	Start frequency	Hz	1.0	0.1	60.0			0		
1	Stop frequency (DC brake start,	Hz	1.0	0.1	60.0			0		

6. Control Functions and Parameter Settings

No.	Parameter	Unit	Default	Min.	Max.	Function	1	Appli	catio	n
							ST	V/f	VEC	PM
C02 – V	arious setting input se	lection			•					
0	Speed setting input selection		4.	1.	4.	= 1 : Analog fixed = 2 : Serial/parallel fixed = 3 : Panel fixed = 4 : Sequence	0			
1	Traverse centre frequency input selection		2.	1.	3.	= 1 : Analog fixed = 2 : Panel fixed = 3 : Sequence	0			
2	Torque setting input selection		3.	1.	4.	= 1 : Analog fixed = 2 : Serial fixed = 3 : Panel fixed = 4 : Sequence			0	
3	Torque ratio 1 setting selection		2.	1.	3.	= 1 : Serial fixed = 2 : Panel fixed = 3 : Sequence			0	0
4	Torque bias 1 setting input selection		3.	1.	4.	= 1 : Analog fixed = 2 : Serial fixed = 3 : Panel fixed = 4 : Sequence			0	0
5	Torque ratio 2 setting input selection		2.	1.	3.	= 1 : Serial fixed = 2 : Panel fixed = 3 : Sequence			0	0
6	Drive/regenerative torque limit input selection		3.	1.	3.	= 1 : Analog fixed = 2 : Seria fixed = 3 : Sequence			0	0
7	ASR response input selection		2.	1.	3.	= 1 : Serial fixed = 3 : Sequence			0	0
8	Machine time constant points selection		2.	1.	3.	= 1 : Serial fix = = . · · · 'anel fixed = 3 : Seque `e			0	0

No.	Parameter	Unit	Default	Min.	Max.	Function	ļ		catio	
							ST	V/f	VEC	PM
C03 - S	equence input function -	1							•	
0	R-RUN (Reverse run)		1.	0.	16.		0			
_1	F-JOG (Forward Jog)		2.				0			
_2	R-JOG (Reverse Jog)		3.				0			
_3	HOLD (Hold signal)		0.				0			<u> </u>
_ 4	BRAKE (DC Brake)		0.				0			
_ 5	COP (Serial transsm.)		0.			Value Input terminal (1)	0			
_ 6	CSEL (Dual ramp.)		0.			0 OFF fixed	0			_
_ 7	IPASS (Interlock bypass		0.			1 PSI1	0			
8	PIDEN (PID)		0.			2 PSI2 3 PSI3	0			
C04 - S	equence input function -	2	1		1	4 PSI4		_		
_0	CPASS (Ramp bypass)		0.	0.	16.	5 PSI5	0			<u> </u>
_1	VFS (Speed setting1)		16.			6 PSI6 Optional 7 PSI7 Optional	0			ļ
_ 2	IFS (Speed setting2)		0.			8 PSI8 Optional				<u> </u>
_ 3	AUX (Speed setting3)		0.			9 PSI9 Optiona	9			<u> </u>
_4	PROG (Multi-speed)		0.			10 (PL0) Program 11 (PL1) out uts	0			<u> </u>
_ 5	CFS (CPU setting)		0.			12 (PL2) (For ture	0			<u> </u>
6	S0 (Aux. selector)		0.			13 (PL3) (ISE)	0			
7	S1 (Aux. selector)		0.			14 EMS 15 EDUN	0			ļ
8	S2 (Aux. selector)		0.			16 JN r 'ea	0			
9	S3 (Aux. selector)		0.				0			
C05 - S	equence input terminal fu	ınctior	n – 3						•	
0	SE (Aux. selector)		0.	0.	16.	(4) Notes:	0			
1	FUP (Frequency Up)		0.			When one function is set to ON	0			
2	FDW (Frequency Down)		0.			(=1^e), it is permanently enabled.When one function is set to OFF	0			
3	BUP (ratio interlock Up)		0.	((=0), it is permanently disabled.When one function is set to any	0			
4	BDW (ratio interlock Down)		0.		O	programmable input PSI1 to PSI9 (=1-9), the function is remotely	0			
5	IVLM (ratio interlock Up/Down bypass)		0	7		enabled or disabled according the status ON/OFF of the input assigned	0			
6	AUXDV (Dual drive)		0.				0			
7	PICK (Pick Up)		0.				0			
8	EXC (Pre-excitation)		0.						0	
9	ACR (Torque control)		0.						0	0
C06 - S	equence input terr I fu	nction	n – 4							
0	PCTL (Proporting all Control ASK)		0.	0.	16.				0	0
1	LIM1 (Drive Orque		0.						0	0
2	LIM2 (Recenerative torque Limit)		0.						0	0
3	MCH (Load time constant)		0.						0	0
	RFu (0 setting)		0.						0	0
5	DROOP(Drooping)		0.						0	0
1 3	DEDB (Dead band)		0.						0	0
7	TRQB1 (Torque bias 1)		0.						0	0
8	TRQB2 (Torque bias 2)		0.						0	0

No.	Parameter	Unit	Default	Min.	Max.		Fund	tion		-	Appli	catio	n
										ST	V/f	VEC	PM
C07 - A	nalog input terminal fu	inction								•			
0	Speed setting 1		2.	0.	7.					0			
1	Speed setting 2		3.	0.	7.			ıt termir	nal (1)	0			
_2	Speed setting 3		0.	0.	7.		0% fix 1 100%			0			
3	Ratio interlock bias setting		0.	0.	7.		FSV FSI	IIXCG		0			
4	Traverse center frequency		0.	0.	7.		4 AUX 5 PAI4 6 PAI5		onal) onal)	0			A
5	PID feedback		0.	0.	7.		7 PAI6		onal)	0			
6	Torque setting		0.	0.	7.				_				0
7	Drive torque limit reduction setting		1.	0.									
8	Regenerative torque limit reduction setting		1.	0.	7.							ر ا	0
9	Torque bias 1 setting		0.	0.	7.							0	0
C08 - A	utomatic start setting												
0	Auto start (To F·RUN/R·RUN)		1.	1.	3.	= 1 : 0 = 2 : 0	ff n without pic	ck-up		0			
							n with pick-u nomentary p						
C09 - P	arameter protection/op	eration I	ocks			-				•			
0	Parameter protection		1.	1.	9.	from the	e operation pether to emiliary	nel (O	PU).	0			
						changii	shown abov	ramete					
							Block E	3, C					
	Parameter p	rotection	:	Setting value	Blcc. 4	L Sic	Extended	S/W	H/W				
	O : Unp	rotected	-	1	0)	0	0	0	0				
		angeable))	_2		Х	Х	Х	Х				
	X : Pro			3	• 0	Х	Х	Х	Х				
	(un	changeab	ole)	N	0	Х	0	Х	Х				
				5	0	Х	0	0	Х				
				6~8	Х	Х	Х	Х	Х				
				9	0	0	0	0	0				
1	Operation panel loc	4	1.	1.	3.	= 2 : D	nables cont Disables cont	rol from	keypad	0			
						d	The STOP k	ed for 2	seconds.				
	I CL quitab war		4	1.	2.		Only STOP k Disables swit			0			
2	LCL switch over protection		1.	1.	۷.	d	rive is runnir	ng					
	•						nables switerive is runnir		hile the				
3	evers e run (se gence R RUN)		1.	1.	2.		to prevent u		onal	0			
	lr ck					When s	set to "2", the	esequer					
						disable							
						(negativ	ve value) is i	nput into	the T				
							setting during on, reverse r						
							Enable $= 2$						

No.	Parameter	Unit	Default	Min.	Max.	Function		Appli	catio	n
							ST	V/f	VEC	PM
	Parameter protection/or	peration I		Г	Г		1	ı	ı	
4	Reverse run jogging (sequence R JOG) lock		1.	1.	2.	Set this to prevent unintentional reverse jogging operation. When set to "2", the "R-JOG" operation command will be disabled. Note that if the reverse run setting (negative value) is input into the jogging setting during "F-JOG" operation, reverse run will start. = 1 : Enable = 2 : Lock	0			X
5	Reverse run during ACR mode lock		1.	1.	2.	Set this to prevent unintentional reverse run operation. When set to "2", reverse run during ACR operation will be cancel. The reverse run speed will be limited to approx. 1% if reverse run is started. This setting is ignored in the V/f mode. = 1 : Enable = 2 : Lock				
6	Fault history buffer clear		0.	0	9999	Set 1 for the setting volue to lear the fault history details The clearing operation will not take place at a seting the lian 1. 1: Clear fau. history	0			
7	Default value load		0.	0	9999	9: All Jerault V. Tos load (excluding ma Tose) 10: Parameter A 11: Parameters B, C basic functions 12: Parameters B, C extended functions 13: Parameter B software option function 14: Parameter C hardware option function 15: Parameters B basic functions 16: Parameters B extended functions 16: Parameter B software option function 17: Parameters C basic functions 18: Parameters C extended functions 19: Parameter C hardware option function 19: Parameter C hardware option function	0			
	Custom 0	ster 	1.99.9	1.00.0	2 00 0	Set for each parameter No. to be			1	l
0 1 2 3 4 5 6	Custom – 0 – 1 – 2 – 3 – 4 – 5 – 7		1.39.9	Paramet number Block nu 0: Block 1: Block	mber B	Set for each parameter No. to be displayed and changed as an A04-0 to 7 custom parameter. Example) To set B13-0 (torque setting), set as 1.13.0.	0			

No.	Par	ameter	Unit	Default	Min.	Max.		Function		/		catio	_
										ST	V/f	VEC	PM
C11 - 0	-	panel mode :	setting				1						
0	Initial mo	de		1.	1.	2.			when	0			
1	Run com	mand status		1.	1.	3.	power C mode (c panel) if (C08-0 : = 1 : S	he initial operation mo DN, during local opera operation from operation the automatic start fu =2 or 3) is enabled. top = 2 : Forward rur everse run	tion on inction	0			^)
3	Operation monitor s			0.0	0.0	99.9		monitor parameter No ed initially when the po DN.		0			
C12 - S	etting inp	ut terminal f	unction										
0	FSV term mode	inal input		1.	1.	3.		0V, 2: 0 ~ 5V, 3: 1 ~ 5		9			
1	FSI termi mode	nal input		1.	1.	2.		0mA, 2: 0 ~ 20m/		0			
2	AUX term mode	ninal input		1.	1.	3.		10V, 2: 0 ~ £5V, ` 1 ~	- oV	0			
3		e constant for and AUX		1.	1.	2.	1: 8ms	2: 32 ns		0			
4	AUX inpu	ıt gain		1.000	0.000	5.000				0			
4				1.000									
			n	1.000	0.000	3.000		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 			l	l .	
C13 - C	utput teri	minal functio	n 	0.	0.000	12.	S 'ect ti	r e setting value from t	the	0			
C13 - C	output teri FM outpu	minal functio	n					e setting value from to g table, and output.	the				
C13 – C	FM output AM output The term freely with	minal function It settings It settings It settings It necession in the setting of	an be cha C14-0.1	0. 3.	0.	12. 12.	follo	y table, and output.		0			
C13 - C	FM output AM output The term freely with	minal function at settings at settings inal voltage can an parameters Parame	an be cha C14-0.1	0. 3. anged	0. 0.	12. 12.	value	g table, and output. Parameter	0	O			
C13 – C	FM output AM output The term freely with Value 0	minal function at settings at settings inal voltage can parameters Parame Output freque	an be cha C14-0.1	0. 3. anged Outp	0. 0.	12. 12.	follo	y table, and output.	O 5V at 30	o o utput	00V S	Series)	
C13 - C	FM output term FM output AM output The term freely with Value 0 1	minal function at settings at settings inal voltage canned by the settings Parameters Parameters Output frequents Setting frequents	an be cha C14-0.1 eter ency ency	Outp Outp 10V at max 10V at max 10V at max	0. 0. out Voltag	12. 12.	Value 7	g table, and output. Parameter	5V at 30 5V at 60 10V at 1	0 0 utput 00V (2 00V (4	00V S	Series)	
C13 – C	FM output AM output The term freely with Value 0	minal function ut settings ut settings inal voltage can h parameters Parame Output freque Setting freque	an be cha C14-0.1 eter ency ency	Outp Outp 10V at max 10V at max 10V at m.	0. 0. out Voltag x. requenc r, sed requence	12. 12.	Value 7	Parameter DC Voltage OLT Monitor Heatsink	5V at 30	0 0 utput 00V (2 00V (4	00V S	Series)	
C13 – C	FM output FM output AM output The term freely with 0 1 1 2	minal function at settings at settings and voltage can and parameters Parameters Output freque Setting freque Setting Speed Ramp output	an be cha C14-0.1 eter ency ency	Outp Outp 10V at max 10V at max 10V at max 10V at max	0. 0. v. requence or sed frequence speed	12. 12.	Value 7 8 9	Parameter DC Voltage OLT Monitor Heatsink Temperature	5V at 30 5V at 60 10V at 1	utput 00V (2 00V (4 00%	00V S 00V S	Series)	
C13 - C	FM output term FM output AM output The term freely with Value 0 1 2 3	minal function It settings It setting frequent It settings	eter ency ency	0. 3. anged Outp 10V at max 10V at max 10V at max 10V at max 1. V at max 5V at moto	0. 0. 0. out Voltage x. requence x. frequence frequence speed or rated cur	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Value 7 8 9 10 11	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	Utput 00V (2 00V (4 00% 00°C	00V S 00V S peed	Series) Series) urrent	
C13 - C	FM output term FM output AM output The term freely with Value 0 1 2 3 4	minal function It settings It setting frequents It settings It set	an be chac C14-0.1 eter ency ency d	Outp 10V at max 10V at max 10V at max 10V at max 10V at max 5V at moto	0. 0. 0. out Voltage x. requence x. f. equence cread r frequence speed or rated currated currated curr	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Value 7 8 9 10	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed	5V at 30 5V at 60 10V at 1 10V at 1	Utput 00V (2 00V (4 00% 00°C	00V S 00V S peed	Series) Series) urrent	
C13 - C	FM output term FM output AM output The term freely with Value 0 1 2 3 4 5 6	minal function at settings at settings inal voltage can be parameters Parame Output freque Setting freque Setting Speed Ramp output Output currer (motor) Output voltage Output Voltage Output pow en	an be charched the	0. 3. anged Outp 10V at max 10V at max 10V at max 10V at max 1. V at max 5V at moto	0. 0. 0. v. requence. x. f. equence. cr. ed cr. frequence. speed or rated current ad Voltage	12. 12.	Value 7 8 9 10 11	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	Utput 00V (2 00V (4 00% 00°C	00V S 00V S peed	Series) Series) urrent	
0 1	FM output term FM output AM output The term freely with Value 0 1 2 3 4 5 6 RC-RA o	minal function at settings at settings inal voltage can an parameters Parame Output freque Setting Speed Ramp output Output currer (motor) Output voltage Output Voltage Output pow enute it set ings	an be charched the	Outp Outp 10V at max 10V at max 10V at max 10V at max 1 V at max 5V at moto 5V a. drive 5V at moto	0. 0. 0. out Voltage or rated curred Voltage or rated por rated por rated por 0.	12. 12. 12. 2y rent ent wer	Value 7 8 9 10 11 12 Select til	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	utput 00V (2 00V (4 00% 00°C nax. s otor ra	00V S 00V S peed	Series) Series) urrent	
0 1	FM output term FM output AM output The term freely with Value 0 1 2 3 4 5 6 RC-RA 0 PSO1 cu	minal function at settings at settings inal voltage can be parameters Parame Output freque Setting freque Setting Speed Ramp output Output currer (motor) Output voltage Output Voltage Output pove utput settings tput settings	an be charched the	Output and an anged Output and and anged Output and and anged and anged and anged and anged and anged and anged	0. 0. 0. out Voltage or rated curred Voltage or rated por rated por 0. 0.	12. 12. 12. 2y rent ent wer 24. 24.	Value 7 8 9 10 11 12 Select til	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	utput 000V (24 000V (24 000°C max.s.g.otor.ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It	an be charched the	Outp 10V at max 10V at max 10V at max 10V at max 10V at max 10V at max 5V at moto 5V at drive 5V at moto 0. 3. 7.	0. 0. 0. 0. v. requences, fi equences peed or rated curred voltage or rated por 0. 0. 0. 0.	12. 12. 12. 24. 24. 24.	Value 7 8 9 10 11 12 Select til	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	utput 000V (24 000V (44 000°C max.s otor rea	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function at settings at settings inal voltage can be parameters Parame Output freque Setting freque Setting Speed Ramp output Output currer (motor) Output voltage Output Voltage Output pove utput settings tput settings	an be charched the	Output and an anged Output and and anged Output and and anged and anged and anged and anged and anged and anged	0. 0. 0. out Voltage or rated curred Voltage or rated por rated por 0. 0.	12. 12. 12. 2y rent ent wer 24. 24.	Value 7 8 9 10 11 12 Select til	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current	5V at 30 5V at 60 10V at 1 10V at 1 5V at m	utput 000V (24 000V (24 000°C max.s.g.otor.ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It setting Speed It settings It settings It settings It ut settings	an be character ency ency d	Outp 10V at max 10V at max 10V at max 10V at max 10V at moto 5V at moto 5V at moto 5V at moto 7V at moto 7V at sate 5V at moto 8.	0. 0. 0. 0. 0. 0. out Voltage x. requence x. frequence speed or rated curred voltage or rated por 0. 0. 0. 0. 0. Value O s	12. 12. 12. 24. 24. 24. 24. utput ignal	Value 7 8 9 10 11 12 Select ti following	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current he setting value from to table, and output.	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It settings In al voltage can be parameters Parameters Output frequence Setting Speed Ramp output Output currer (motor) Output currer (motor) Output voltage Output voltage Output power utp it settings 'but settings 'but settings 'tut settings Val	an be character ency ency did	Outp 10V at max 10V at max 10V at max 1. V at moto 5V at drive 5V at moto 5V at moto 7V at moto 1. Outp 10V that 1. The moto 1	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	12. 12. 12. 24. 24. 24. 24. 24. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Value 7 8 9 10 11 12 Select til following	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current he setting value from to table, and output.	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It settings In al voltage can be parameters Parameters Output frequence Setting Speed Ramp output Output currer (motor) Output currer (motor) Output voltage Output voltage Output settings in the setting in the settings in the setting	teter ency ency d	Outp 10V at max 10V at max 10V at max 1. V at moto 5V at drive 5V at moto 5V at moto 7V at moto 1. Outp 10V that 1. The moto 1	0. 0. 0. 0. 0. 0. 0. 0. v. requence frequence speed for rated curred curred voltage for rated por voltage for voltage	12. 12. 12. 24. 24. 24. 24. 24. 11. 24. 24. 24. 24. 24.	Value 7 8 9 10 11 12 Select the following Value 16 17	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current esting value from to table, and output.	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It settings Inal voltage can be parameters Parameters Output frequence Setting Speed Ramp output Output currer (motor) Output currer Output Voltage Output yoltage Output settings Tout settings	an be character ency ency ency ency ency ency ency ency	Outp 10V at max 10V at	0. 0. 0. 0. 0. 0. 0. 0. v. requence frequence speed frequence speed for rated currented Voltage for rated por voltage for rated por voltage for rated frequence freque	12. 12. 12. 24. 24. 24. 24. 24. 24. 21. 12. 24. 24. 24. 24.	Value 7 8 9 10 11 12 Select til following	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current Parameter DC Voltage Output signal ACC AUXDV	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function It settings It settings In al voltage can be parameters Parameters Output frequence Setting Speed Ramp output Output currer (motor) Output currer (motor) Output voltage Output voltage Output settings in the setting in the settings in the setting	an be character concy ency ency ency ency ency ency ency e	Outp Outp 10V at max 10V at	0. 0. 0. 0. 0. 0. 0. v. requence rated curred of voltage or rated por voltage or rated por voltage of voltage	12. 12. 12. 24. 24. 24. 24. 24. 11. 24. 24. 24. 24. 24.	Value 7 8 9 10 11 12 Select ti following Value 16 17 18	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current esting value from to table, and output.	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function at settings at settings at settings are settings and voltage can be parameters Parameters Parameters Parameters Output frequence Setting Speed Ramp output Currer (motor) Output currer Output Voltage Output voltage Output povied to settings at the settings are settings. Val Val 2 3 4 55	an be charched the control of the charched t	Output 10V at max 10V at max 10V at max 10V at max 1, V at max 5V at moto 3V at rate 5V at moto 0. 3. 7. 8.	0. 0. 0. 0. 0. 0. 0. 0. v. requence speed or rated curred voltage or rated por rated p	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Value 7 8 9 10 11 12 Select ti following Value 16 17 18 19 20 21	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current the setting value from to g table, and output. Output signal ACC DCC AUXDV ALM FAN ASW	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed ated cr	Series) Series) urrent	
0 1	The term freely with 2 3 4 5 6 RC-RA o PSO1 cu	minal function at settings at settings at settings are settings and voltage can be parameters Parameters Parameters Output frequence Setting frequence Setting frequence Setting frequence Setting Setting Setting Setting Setting Settings are settings at settings and settings are settings are settings are settings. Val	an be charch control of the control of the charch control of the c	Output 10V at max 10V at max 10V at max 10V at max 1, V at max 5V at moto 5V at moto 3. 7. 8.	0. 0. 0. 0. 0. 0. 0. 0. 0. o. frequences frequences preed or rated curred voltage or rated por 0. 0. 0. 0. 0. 10. 0. 11. 12. 13. 14. 16. 16.	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Value 7 8 9 10 11 12 Select ti following Value 16 17 18 19 20	Parameter DC Voltage OLT Monitor Heatsink Temperature Motor speed Torque current Excitation current he setting value from 1 g table, and output. Output signal ACC DCC AUXDV ALM FAN	5V at 30 5V at 60 10V at 1 10V at m 5V at m	utput 00 (2000 (4) 000°C 000 oor ra 000 oor ra	00V S 00V S peed ated cr	Series) Series) urrent	

No		Parameter	Unit	Default	Min.	Max.	Function	-	Appli	cation	า
								ST	V/f	VEC	PM
C14	– N	leter output gain									
	0	Output gain for FM		1.00	0.20	2.00	10V at Max. frequency when this is	0			
	1	Output gain for AM		1.00	0.20	2.00					
C15	– S	tatus output detection	level								
	0	Attainment (ATN) detection width	%	1.0	0.0	20.0	The attained output (ATN) operation width is set.	0			
	1	Current (IDET) detection level	%	100.	5.	300.	The current detection (IDET) operation level is set.	0			
	2	Speed detection (SPD1) level – 1	%	95.0	1.0	105.0	The speed detection (SPD1, SPD2) operation level is set.	0			
	3	Speed detection (SPD2) level – 2	%	50.0	1.0	105.0		0			
	4	Zero speed detection (ZSP) level	%	1.00	0.00	50.00	The zero speed detection (ZSP) operation level is set.	0			

No.	Parameter							Appli	cation	1
							ST	V/f	VEC	PM
C20 – S	tart interlock									
0	Start/stop frequency (speed)	%	0.0	0.0	20.0	The motor will stop when below this frequency setting.	0			
1	Start/stop frequency (speed) hysteresis	%	1.0	0.0	20.0		0			
2	Interlock frequency (speed)	%	0.0	0.0	20.0	The motor will not start when the speed or frequency setting is lower than this frequency.	0			A
						When C20-0=0, the setting start/stop will not operate. When C20-2=0, the setting interlock will not operate.				
3	RUN delay timer	sec	0.00	0.00	10.00	Delays F RUN or R RUN operation				
C21 - R	etry/pick-up									
0	Number of retries		0.	0.	10.	No of re-start tries after a fault				
1	Retry wait time	sec	5.	1.	30.	Delay time between tries	0			
2	Pick-up wait time	sec	2.	1.	10.	Delay time before pick-up	0			
3	Pick-up current limit value	%	100.	50.	300.	Do not set a value less that the excitation current.	0			
C22 – C	verload									
0	Overload setting	%	100.	50.	105.	Note that whe parameter is changed, Parameter is C22-1 and C22-2 will aux matically be adjusted to the value of the setting.	0			
1	0Hz overload	%	100.	20.	105.	The maximum value is as set on C 22-2.	0			
2	0.7Base freq.overload	%	100.	50.	105	Tip min num value is as set on \$22-1.	0			
3	DBR overload	%	1.6	0.0	16.7	Tt.s is %ED of DBR operation for drives with built in dynamic braking. Set 0.0 to disable protection or when an external DBR module is used	0			
4	Motor loss braking setting	%	50.0	0.0	70.0	This function is valid when control mode selection is C30=1,2 and DBR option selection is C31-0=3,4	0			
						cteristic selection (C30-0). , these max. value is 100.				
C23 – S	tart/Stop frequency-Ov	erload (drive)	•					
0	Start frequency	h∠	1.0	0.1	60.0		0			
1	Stop frequency (DC Brake start)	Hz	1.0	0.1	60.0		0			
2	Overload seting	%	100.	50.	105.	changed, Parameters C23-3 and C23-4 will automatically be adjusted to the value of this setting.				
3	0Hz overload	%	100.	20.	105.	05. The maximum value is as set on C23-4.				
4	0.7Ba e freq.overload	%	100.	50.	105.	The minimum value is as set on C23-3.	0			

No.	Parameter	Unit	Default	Min.	Max.	c. Function					-		catio	_
											ST	V/f	VEC	PM
C24 -	Speed detection error m	onitor									•		•	
0	Overspeed protection level	%	105.0	100.0	200.0	The over	erspeed p set.	orotectio	n opera	ation			0	0
1	Control mode change- over during speed detection error		1.	1.	3.	= 1: S r = 2: S r = 3: S r When P	control at Speed de monitore Speed de monitore sensor-le Speed de monitore ess vect M motor 5), set C	etection d etection d (Do notes vecto etection d (Switco control	error no error ot chang or contro error h to ser ol) is enab	ot ge to ol) nsor- led			0	0
2	'	%	10.0	1.0	100.0		ditions f		ng the s	peed			0	0
3		%	5.0	1.0	100.0		n error a C24-2 ≥ 0						0	
COE	recovery level									\nearrow				
0	High-efficiency operation Voltage reduction time	sec	10.0	0.1.	30.0		time for t				0			
1	Voltage lower limit setting value	%	100.	10.	100.	When s	electing on function	a h ∫h e	h ieric	y	0			
2	1		2.	1.	2.	= 1 : (F	ON/C'F Fon is C' ON/OFF	con following while in	enablinverter	ed. runs.	0			
C26 -	Standard serial transmis	ssion set	ting	I	I		1					1		
0	1_		1.	1.	ŗ.	Ti, nar	meters	are sho	wn in be	elow				
								Block	B. C					
				<u>,</u> (Sett- ig value	Block A	Basic	Ex- tend	S/W	H/W				
					1	0	0	0	0	0	_			
					2	Х	Х	Х	Х	Х	0			
		1	1		3	0	Х	Х	Х	Х]
		1			4	0	Х	0	Х	Х]
			1		5	0	Х	0	0	Х				
		1): Chang	eable	X: Loc	k					
1	Station Lumber		1.	0.	32.	Set the	station n	umber			0			
2	Response timer	sec	0.00	0.00	2.00	Set the	minimun after rec	n time fo			0			
	Refer to instruction man	nual (PCS	ST-3298)	•	•	•		-			•	•	•	

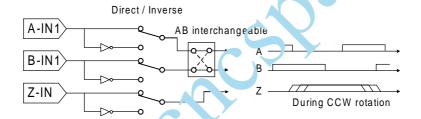
Block-C parameters (H/W extended functions) list

No.	Parameter	Unit	Default	Min.	Max.	Function	4	Applic	ation	1
							ST	V/f	VEC	PN
C30 – C	Control mode selection									
0	Control mode selection		_	1.	5.	The control mode is set. = 1: V/f control (constant torque: overload characteristics 150% for one minute.) = 2: V/f control (variable torque: overload characteristics 120% for one minute.) = 3: Speed sensor-less vector control = 4: Speed vector control with sensor = 5: PM Motor control	0			
C31 - N	Main circuit option selec	tion							_)_	
0	DBR option selection		1.	1.	4.	 = 1: Both Dynamic braking and motor loss braking disabled = 2: Dynamic Braking enabled = 3: Motor loss braking enabled = 4: Both Dynamic braking and motor loss braking enabled 	0			
1	Ground fault detection function		1.	1.	2.	= 1 : Enabled = ? : Di. abled	0			
C32 – F	PC Parallel interface									
0	Input mode (strobe)		1.	1.	3.	= 1 : 10 bit = 2 : 8-bit = 2 : 10-bit sample	0			
1	Input mode (input logic)		1.	1.	2.	= 1: 1 at JN input status = 2: 0 at OFF input status	0			
2	Data format		1.	0.	10.	et according to the following table	0			

Setting data	Format	Setting resolution	Setting range
0	16-bits binary	0,01Hz/LSB (1.1rpm/LSB)	0 to 440.00Hz
1	16-bits binary	0,01Hz/LSB (11p, LSB)	440.0 Hz
2	16-bits binary	0,01%/LSB	100.00%
3	16-bits binary	0 %/LSB	100.0%
4	16-bits BCD	0,01 뉴스 SB (0.1rpm/LSB)	99.99Hz
5	16-bits BCD	U, 111z/LSB (1rpm/LSB)	100.0Hz
6	16-bits BCD	0,01%/LSB	99.99%
7	16-bits CD	0,1%/LSB	100.0%
8	8-hits BCD	1/255%	100.0%
9	12-bits . ` D	1/4095%	100.0%
10	16-bits BCD	1/65535%	100.0%

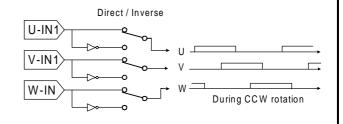
Parallel con mun. Ticns need option U2KV23PIO. Refer to instruction manual PCST-3303 for details

Block-C parameters (H/W optional functions) list


No.	Parameter	Unit	Default	Min.	Max.			Functio	n		Δ	hppli	catio	n
											ST		VEC	_
33 – 8	Sequence output function	on		I.										
0	PSO4 Output		5.	0.	24.	These	relay o	utputs ca	an be pi	rovided	0			
1	PSO5 Output		6.	0.	24.		ner of U2				0			
						U2KV	23PIO o	ptionali	птепасе	es				
	Value Output	Va	lue Out	put	Value	Output	Val	ue Ou	tput					
	signal		sigi	nal		signal		siç	gnal					
	0 RUN		ATN			ACC	24	4 ULN	ЛT					
	1 FLT 2 MC		9 SPD 0 SPD			DCC AUXDV								
	3 RDY1	1				ALM								
	4 RDY2	1	2 EC0		20 I	-AN								
	5 LCL		3 EC1			ASW							1	
	6 REV 7 IDET		4 EC2 5 EC3			ZSP _LMT								
	1 IDL1	<u>, </u>	5 1205		20 1		l							
04 6	\													
34 – S	Serial interface Baud rate (bps)		1.	1.	6.	= 1: 3	00	= 4: 2	400		ि।			
U	baud rate (bps)		1.	1.	0.	= 2: 6		= 5: 4						
						= 3: 1:		= 6: 9						
1	Transmission system		1.	1.	2.	= 1: 1	: 1	= 2' 1:			0			
2	Pariry check		1.	1.	3.	=1: No	one, =2:	Even, =	3: Cud		0			
3	Parameter settting		1.	1.	5.		arame†¢	rs arc sl	nown in	below				
	protection					table								
						1			b 0					
					Sett-			Block	1					
					ing	B ock	Easic	Ex-	S/W	H/W				
					valu ə	1		tend						
					1		0	0	0	0				
					2	X	Х	Х	Х	X				
					<u> </u>	0	X	X	X	X				
				1		1				 				
					4	0	Х	0	Х	Х				
					5	0	Х	0	0	X				
			1	4		0.05	- I - C	V. I	مماد					
						O: Char	igeable	X: L	DCK					
4	Station No.		1.	0.	32.	Set th	e local s	tation n	ımber		0			-
5	Response timer	sec.	0.00	0.00	2.00	_				rning an	0			\vdash
5	Tooponoo umoi	300.	0.00	3.00	2.00		er after r							
-	This serial comm. need	ds option	card U2K	V23SLO.	Refer to						detail	S		
35 – F	Profibus literface													
0	Station number		1.	1.	126.						0			
1	Tranchission error		1.	2.	2.	= 1: D	etection	error di	sabled		0			

Block-C parameters (H/W optional functions) list

No.	Parameter	Unit	Default	Min.	Max.	Function	-	Applio	cation	1
							ST	V/f	VEC	PM
C50 - E	ncoder setting									
0	Encoder pulse divided output		4.	1.	1024.	The pulses received from the encoder can be divided and output through PAOUT and PBOUT			0	
1	Encoder output pulse type selection		1.	1.	2.	= 1: 2-phase input = 2: 1-phase input In vector control with sensor mode, set this parameter and B01-8 as well			0	
2	Encoder ABZ pulse type selection		0.	0.	15.	Set values according following table			0	0


Setting	A-IN	B-IN	Z-IN	AB
No.	Direct/	Direct/	Direct/	inter-
	Inverse	Inverse	Inverse	change
0	Direct	Direct	Direct	
1	Inverse	Direct	Direct	
2	Direct	Inverse	Direct	No inter-
3	Inverse	Inverse	Direct	change
4	Direct	Direct	Inverse	
5	Inverse	Direct	Inverse	
6	Direct	Inverse	Inverse	
7	Inverse	Inverse	Inverse	

Setting	A-IN	B-IN	Z-IN	AP m.er-
No.	Direct/	Direct/	Direct/	c \ange
	Inverse	Inverse	Inverse	
8	Direct	Direct	Direct	
9	Inverse	Direct	Di ect	
10	Direct	Inverse	Direct	. B inter-
11	Inverse	Inverse	irectرا	change
12	Direct	Direc	Inverse	
13	Inverse	Dir ot	ı. "ıse	
14	Direct	Invers	Inverse	
15	Inverse	In rse	Inverse	

C5	1 – E	incoder setting (PM)							
	0	Encoder UVW pulse type selection	ı	0	0	7.	Set a value according the table shown below		0
	1		deg	0.0	0.0	359.9	Electrical angle from Z phase to U winding		0
	2	Z phase → U phase signal phase angle	dec	0.0	0.0	359.9	Electrical angle from Z phase to U signal		0

Setting No.	U-IN Direct/ Inverse	۷-IN این مار Inverse	W-iN Direct/ Inverse	UV inter- change
0	Direc	bi. t	Direct	
1	Inverse	Direct	Direct	
2	Di ect	Inverse	Direct	No inter-
3	Inverse	Inverse	Direct	change
4	Direct	Direct	Inverse	
	Inverse	Direct	Inverse	
	Direct	Inverse	Inverse	
7	Inverse	Inverse	Inverse	

6-5 Block-U Parameters

Block-U parameters (Utility mode) list

No.	Parameter	Unit	Default	Min.	Max.		Function		Appli	catior	1
								ST	V/f	VEC	PM
U00 – F	Parameter Control										
0	Parameter Copy function		0.	0.	9999.	= 1001: = 2002: = 3003:	The data is saved from inverter to operation panel Load The data is loaded from operation panel to inverter Verify check Verification of inverter and Operation panel data	0			^
						= 4004:	Clear Data of operation panel is cleaned				

6-6 Function explanation

A00-0 A00-2

Local frequency setting Local speed setting

This is the frequency (or speed) setting used in the local mode (operation control from the operation panel when it is enabled, -"LCL" LED ON-.

The output frequency (speed) changes immediately according to the (

O operation.

Refer to section 5-9-1 for details on selecting the speed setting.

A00-1 A00-3

Frequency setting for jogging Speed setting for jogging

This is the frequency (speed) setting selected when executing jogging run inough the sequence command F JOG or R JOG.

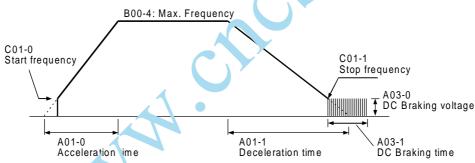
An acceleration/deceleration time exclusive for jogging can be set with 2,0-2 and B10-3.

B10-2: Acceleration ramp time for jogging

B10-3: Deceleration ramp time for jogging

A01-0, 1

A03-0. 1

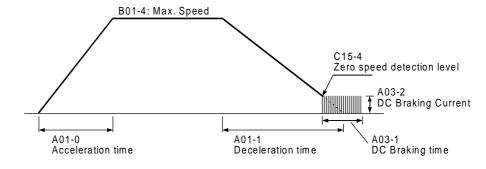

C01-0, 1

Acceleration/deceleration times

DC brake

Start/stop frequency

(V/f control: C30-0 = 1, 2)



This is the a celeration ramp time validated during normal use (when sequence command CSEL, OFF). The inverter may trip if the set time is too short.

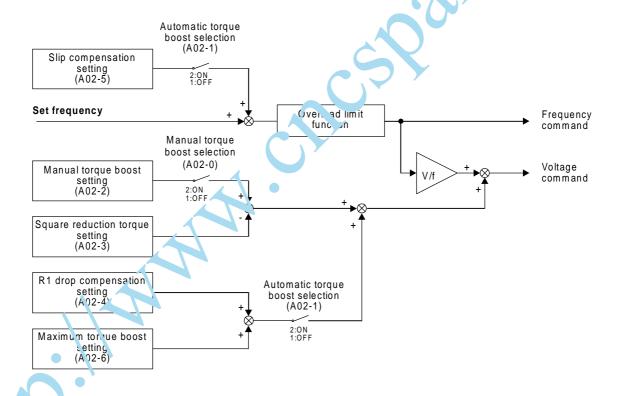
Increase 2 DC braking voltage in units of 1% or less at a time while monitoring the output curren. The inverter may trip if the setting is too high.

(Note) The DC braking voltage is automatically adjusted by the Autotuning function

(IM Vector control: C30-0 = 3, 4), or (PM motor control: C30-0=5)

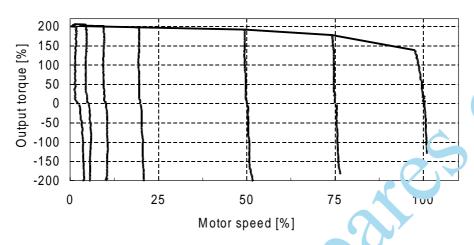
A02-0 Manual torque boost selection

This setting allows increase the torque at low speed for V/f control. When manual torque boost is enabled, this will be valid regardless of the automatic torque boost selection state.


A02-1 Automatic torque boost selection

The automatic torque boost optimises the V/f control. The functions R1 drop compensation, slip compensation and maximum torque boost functions will be enabled.

- (Note 1) Is possible to validate only the slip compensation function when manual to que boost is selected, setting the slip compensation function (A02-5). An other parameters (A02-3, 4, 6) should be set to 0.
- (Note 2) The square reduction torque setting, for quadratic loads, is always valid regardless of the torque boost selection state.


 To invalidate the square reduction torque setting, set (ACC 3) to 0.

Torque boost selection block diagram (V. control)

Automatic torque boost function (V/f improved control)

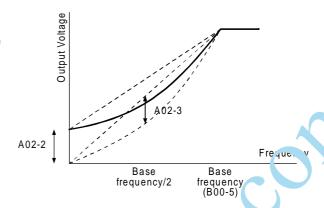
The automatic torque boost function controls voltage boosting and slip compensation using the current detection value. This allows to improve the motor torque when starting and at the low speed regions. Critical parameters which performs the automatic torque boost function, will be automatically adjusted by the Auto-tuning function, allowing that a standard AC motor outputs up to 200% or more starting torque with 150% current.

< standard 3-phase induction moto 1.5. W-4P>

CAUTION

- Even using only manual torque boost, carry our auto, ratic tuning (B19-0 = 1).
- When using automatic torque boost, always arry but automatic tuning (B19-0 = 2).
- The maximum torque is not output instantly. It takes approx. 3 seconds for the maximum torque to be reached.
- If the motor vibrates abnormally, etc. Ang Auto-tuning, cancel it and adjust the drive manually.
- If the parameters are with set man, the motor rotation could become unstable.
- Special motors which the base requency greatly exceeds the commercial frequency, or motors with a large constant voltage range, the rotation may be unstable and torque may not be sufficient.
- Check motor temperature if the application requires high torque for a long time

A02-2


Manual torque boost setting [%]

This parameter is automatically set by automatic tuning (V/f control mode).

When setting manually, set the boost voltage at 0Hz as a percentage in respect to the rated output voltage (B00-3).

A02-3 Square reduction torque setting [%]

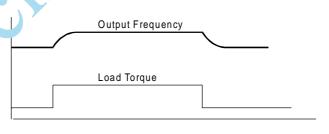
Set the reduction torque at the base frequency (B00-5)/2 as a percentage in respect to the rated output voltage (B00-3)

(Note) When both A02-2 and A02-3 are set, the voltage will be added as shown above.

A02-4 R1 drop compensation gain [%]

This setting compensates the voltage drop caused by R1. Not ally set to 50%. The motor primary resistance R1 must be properly adjusted by the Auto-tuning.

(Note 1) If set too high, the rotation become unstable and the drive may trip.


(Note 2) If set too low, the torque may not be sufficient

A02-5 Slip compensation gain [%]

This is automatically set by automatic tuning.

When setting manually, set the slip frequency for the motor rated load as a percentage in respect to the base frequency (Buch).

The output frequency changes according to the motor rated torque as shown below.

(Note 1) e slip compensation will not function in respect to the regenerative torque.

(Note 2) The output frequency will respond with a time constant of approx. 500ms in respect to the changes in the load torque.

(Not: 3) When set too high, the motor rotation could become unstable.

Maximum torque boost gain [%]

This is automatically set by automatic tuning.

The optimum boost value for outputting the maximum torque is set as a percentage in respect to the rated output voltage (B00-3).

Normally, a value of 10 to 30% is set by automatic tuning.

(Note 1) When adjusted manually, the sufficient torque may not be attained.

(Note 2) If set too high, the rotation may become unstable and may trip.

A04-0~7 Custom parameters

C10-0~7: Allow selection of custom parameters. Refer to section 4-7 for details.

A05-0~2 Block B, C parameter skip

These parameter allows selection of parameters to be displayed.
Unnecessary displays can be reduced with this parameter, allowing easier operation.
All displays are set to skip as the default.

A10-0 ASR response

This parameter is used to calculate the gain of the ASR.

ASR gain:

Kp = ASR response (A10-0) [rad/s] $\times \frac{\text{Machine time constant (A 0-1) r B15-0) [ms]}}{10.0}$

ASR integral time constant:

Ti = $\frac{4}{\text{ASR response (A10-0) [rad/s]}} \times \frac{\text{Compensation coefficient (A10-2) [%]}}{100}$

A10-1 Machine constant – 1

This is used to calculate the ASR gain. This is valid when the sequence input machine time constant changeover is OFF (MC) OFF).

TM [s] =
$$\frac{\text{GD}^2 [\text{kgm}^2] \times 1...27 \times (\text{Nbase [min}^{-1}])^2}{375 \times 2 \text{ ower [W]}}$$
TM : Machine time constant GD2 : Total inertia load and motor

Nbase: Base speed Power: Motor rated output

A10-3 ASR drive torque limit

A10-4 A10-5

A11-2

A11-3

ASP regulerative torque limit

Emergency stop regenerative torque limit

ACR drive torque limit

ACR regenerative torque limit

The output current is limited by the overcurrent limit value (B18-0). To generate motor torque set a value larger than the value given in below expression.

 $\frac{\sqrt{\left(\text{Exciting current}\right)^2 \times \left(\text{Torque current}\right)^2}}{\text{Motor rated current (B01-6)}} \times 100 \le \text{B18-0}$

B00-7

B01-7

Carrier frequency

The PWM carrier frequency and control method can be changed to change the tone of the magnetic sound generated from the motor. The relation of the setting range and control method is shown below.

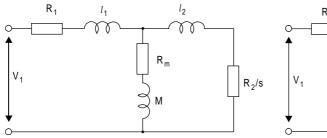
1) For drives up to U2KN37K0S or U2KX45K0S

1.0 to 15.0 : Mono sound method (Actual carrier frequency: 1.0 to 15.0kHz) 15.1 to 18.0 : Soft sound method 1 (Basic carrier frequency: 2.1 to 5.0kHz) 18.1 to 21.0 : Soft sound method 2 (Basic carrier frequency: 2.1 to 5.0kHz)

1) For drives larger than U2KX45K0S, (from U2KX45K0S to U2KX315KS)

1.0 to 8.0 : Mono sound method (Actual carrier frequency: 1.0 to 8.0kHz, 8.1 to 11.0 : Soft sound method 1 (Basic carrier frequency: 2.1 to 5.0kHz) 11.1 to 14.0 : Soft sound method 2 (Basic carrier frequency: 2.1 to 5.0kHz)

[Mono sound method]


This control method has a constant PWM carrier frequency. When a now carrier frequency is set, an annoying magnetic sound may be generated.

[Soft sound method]

This control method changes the PWM carrier frequency at a fixed cycle, producing a softer sound and lower electrical noise than the monc-sound nethod..

- (Note 1) There are cases when the setting value and actual carrier frequency (reference carrier frequency for soft out nethod) differ. Confirm the actual carrier frequency with D03-3.
- (Note 2) In some cases the effect consise onto the inverter's peripheral devices can be reduced by lowering the carrier frequency.
- (Note 3) If set to higher than the pecified carrier frequency, the output current must be derated. Refer to Fig. 1-2 in Appendix 1 for details.
- (Note 4) If the heat and the output current exceeds 90%, the arrier requency will automatically change to 4kHz.

B02-0~9 Motor circuit constant (IM)

 R_1 V_1 M' R_2'/s

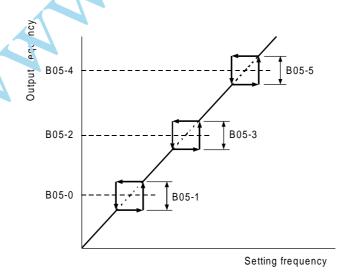
T-type equivalence circuit

T-I type equivalence circuit

$$M' = M^{2}/(l_{2} + M)$$

$$L\sigma = (l_{1} + M)-M^{2}/(l_{2} + M)$$

$$R_{2}' = (M/(l_{2} + M))^{2} \cdot R_{2}$$


B03-0~4 Motor circuit constant (PM)

Parameter related to Permaent Magnet motor control

B05-0~5 Frequency skip

By setting this parameter, the rotor's mechanical resonance point at a specific frequency can be skipped.

Valid only during V/f control (C30 0 = 1, 2).

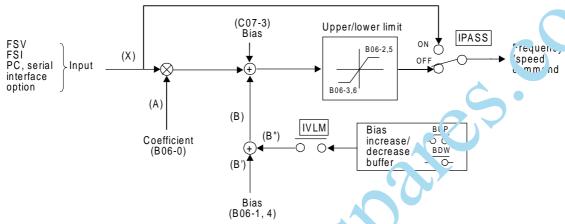
(Note) This function controls the frequency setting, so the above skip frequency area will be passed with a ramp function.

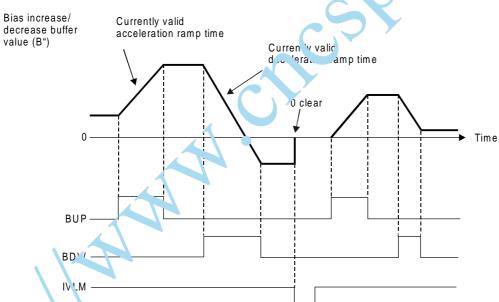
B06-0~6

Ratio interlock setting

The ratio interlock operation executes the following expression and corresponds to each speed setting input signal.

Y = AX + B + C


X: Frequency (speed) setting input


Y: Frequency (speed) command (operation results)

A: Coefficient (B06-0)

B: Bias (B06-1, 4 where B'' = 0)

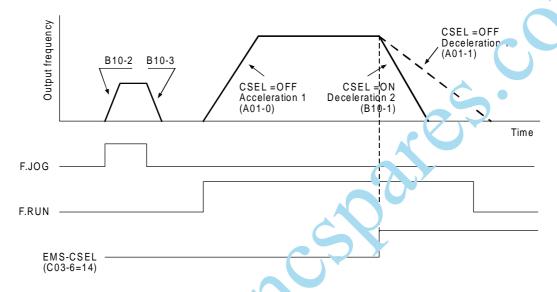
C: Bias (C07-3)

icterlock bias increase/decrease function)

When IVLM turns ON, is possible to increase/decrease the bias (B"), by BUP and BDW functions.

nic bias is added to the ratio interlock bias value (B')

If BCP turns ON while IVLM is ON, the bias buffer (B") increases its value with the currently valid acceleration ramp rate. When BDW turns ON, the bias buffer (B") decreases its value with the currently valid deceleration ramp rate.

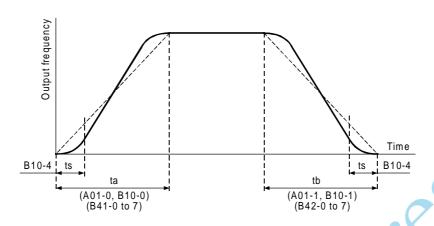

If both BUP and BDW turn OFF while IVLM is ON, the current bias buffer value (B") is held. If IVLM turns OFF, the current bias buffer value(B") is cleared to zero, and the BUP and BDW operations are ignored.

If the operation command (RUN) turns OFF, the current bias buffer value (B") is cleared to zero. The BUP and BDW operations are also ignored in this case.

B10-0	Acceleration ramp time -2
B10-1	Deceleration ramp time -2
B10-2	Acceleration ramp time for jogging
B10-3	Deceleration ramp time for jogging

The ramp up/down time can be switched by turning the sequence command CSEL to ON Set the CSEL command input terminal with C03-6 parameter.

The ramp time for jogging can be set independently with B10-2 and -3.


The above run example shows the cas, when the sequence command CSEL is connected to the EMS terminal (C03-6=14) and the run is decelerated with ramp down time -2 during emergency stop.

(Note) The acceleration or deceleration ramp time set, is the time to reach maximum frequency (20-4) or maximum speed (B01-4) from zero, or the opposite.

B10-4

S-shape characteristics

Acceleration/deceleration with the S-shape pattern is possible by setting this parameter.

This parameter indicates the time of the section shown as "s" aunve.

The total acceleration/deceleration times to and to will no change.

When this parameter is set, all the acceleration are deceleration ramps available in the VAT2000 will be S-type.

(Note) Set so that the relation of the B10-4 string and acceleration/deceleration time is as shown below.

B10-4 Setting value (ts) 2 celeration/deceleration time (ta, tb)

B10-5

Time unit multiplier

The acceleration/deceleration time setting unit can be changed when an acceleration/deceleration time in a wice, range is to be set.

B10-5 = 1 (standard) : \times 1 ? : \times 0.1 3 : \times 10

This para. Yer will affect all acceleration/deceleration time parameters.

B11-0~7

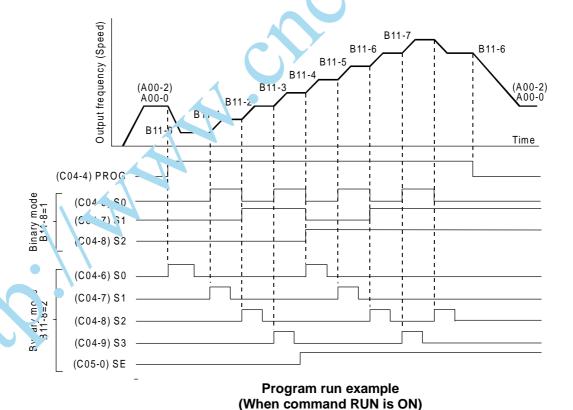
B11-8

Program frequency (speed) setting Selection mode setting

Up to eight fixed output frequencies or speed are allowed when PROG function is enabled. Set desired frequencies or speed to parameters B11-0 to B11-7, in percentage of maximum output (B00-4) and (B01-4).

Selection of speeds or frequencies are done through auxiliary functions S0, S1, S2, S3, and SE, as shown in below table.

(1) For binary selection mode (B11-8=1)


	Seque	Selected			
SE	S3	S2	S1	S0	frequency
*	*	OFF	OFF	OFF	B11-0
		OFF	OFF	ON	B11-1
		OFF	ON	OFF	B11-2
		OFF	ON	ON	B11-3
		ON	OFF	OFF	B11-4
		ON	OFF	ON	B11-5
		ON	ON	OFF	B11-6
		ON	ON	ON	B11-7

*: SE and S3 are not used.

(1) For direct selection mode (B11-8=2)

	Seque	Selr cted			
SE	S3	S2	S1	S0	frequincy
OFF	OFF	OFF	OFF	OFF	Latest val e
OFF	OFF	OFF	OFF	ON	L11-0
OFF	OFF	OFF	ON	OFF	B11-1
OFF	OFF	ON	OFF	JIT	B11-2
OFF	ON	OFF	OF:	CEE	B11-3
ON	OFF	OFF	≎FF	OFF	Latest value
ON	OFF	OFt	OFF	ON	B11-4
ON	OF	, FF	ON	OFF	B11-5
ON	OFF	01.	OFF	OFF	B11-6
ON	O'	ŀF	OFF	OFF	B11-7

when 5 to \$3 are all OFF the latest frequency le is hold. After power ON the latest value is cleared to "0"

Set the PROG command input terminal with C04-4. Set the S0, S1, S2, S3 and SE input terminals with C04-6~C05-0.

B13-0 Torque setting

Refer to section 5-9-2 for details on selecting the torque setting.

B13-1 Torque ratio 1 setting

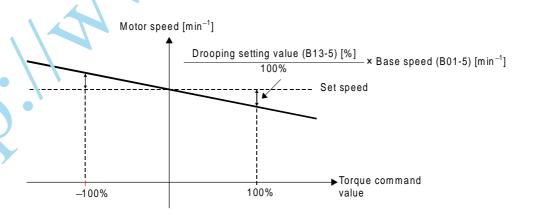
Refer to section 5-9-5 for details on selecting the torque ratio 1 setting.

B13-2 Torque bias 1 setting

Refer to section 5-9-3 for details on selecting the torque bias 1 setting.

B13-3 Torque ratio 2 setting

Refer to section 5-9-6 for details on selecting the torque ratio 2 setting.


B13-4 Double rating speed ratio setting

Refer to section 5-9-4 for details.

B13-5 Drooping setting

Set the drooping value within the range of the following expression. If it becomes unstable, adjust the drooping setting value and the related parameters.

Drooping setting value (B13-5) [%] x ASR response (A10-0) [rad/s] x Machine time constant (A10-1 or B15-0) [ms] < 0.5

B13-6

B13-7

ASR gain compensation in constant power range ACR gain compensation in constant power range

Increase or decrease each ASR gain and ACR gain in power constant speed range.

B14-0

ASR dead band setting

Refer to Fig. 5-1 for details.

B15-0

Machine time constant 2

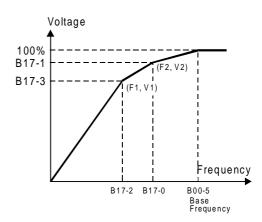
This is used to calculate the ASR gain. This is valid when the sequence input machine time constant changeover is ON (MCH ON)

TM [s] =
$$\frac{GD^{2} [kgm^{2}] * 1.627 * (`'base[min^{-1}])^{2}}{37.57 \text{ ower [W]}}$$

: Machine time constant TM

 GD^2 : Total inertia of motor and load

Nbase: Base speed Power: Motor rated output


B17-0~3

V/f middie point

A Vf characteristic as shown on the right can he obtained for motors having special V/f characteristics.

(Note)

Set so that $F1 \le F2 \le Base$ frequency (B00-5) and $V1 \le 2$.

B18-0	Over current limit
B18-1,2	Check next page
B18-3	Over current limit gain
B18-4	Current stabilisation gain
B18-5	Over current breakdown prevention gain
B18-6	Over current stall prevention time constant

The over current limit is a function that lowers the output frequency and supprecess i. a current so that the motor current does not exceed this parameter setting value during stating or constant running. The setting uses the motor rated current (B00-6) as 100%.

Normally, set the default value (150%).

(Note) Set a value larger than the motor no-load current.

The overcurrent limit function is configured of the following three convol blocks.

(1) Overcurrent vector limit function

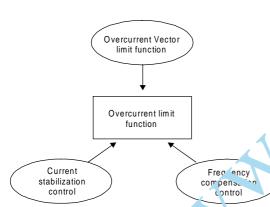
This uses the overcurrent as a vector, and generates a suppressing voltage vector instantly to suppress the current. The response as assumed with the overcurrent limit gain (B18-3).

Normally, set the detait value (0.25).

If the setting value s in reased, the response will become faster, but the operation may become unstable.

(2) Current tabilisation control

suppresses the sudden changes during overcurrent suppression by controlling the output frequency. The onse is adjusted with the over current stabilisation gain (B18-4).


Normally, set the default value (0.25).

If the setting value is increased, the torque vibration will be reduced, but the operation may become unstable.

(3) Frequency compensation control

This feeds back the voltage suppressed with the overcurrent vector limit function to the frequency command and prevents breakdown. The response is adjusted with the over current stall prevention gain (B18-5) and over current stall prevention time constant (B18-6). Normally, set the default value (B18-5 = 1.0, B18-6 = 100). If the gain setting value (B18-5) is increased or the time constant value (B18-6) is decreased, the response will become faster, but the operation may become unstable.

(Note) The overcurrent limit function is valid at all times regardless of whether automatic tuning has been executed.

B18-1

Regenerative current limit

The regenerative torque to deceleration running is limited. Set to 10% when not using the DBR option. When using the DBR option, calculate the value with the following formula and set.

B18-1 setting value =
$$\left[\left(\frac{V2}{DBR \text{ resistance value}} \right) / \text{ Motor capacity [kW]} \right] \times 100 [\%]$$

where V2=148.2 for the 200V system and V2=593 for the 400V system.

B18-2

Torque stabilisation gain

This function suppresses the hunting phenomenon that causes the current \(\circ\) vibrate during motor operation.

Normally, the specified value (1.00) is set, and the setting value is in each appropriately according to the hunting.

Note that the hunting phenomenon occurs easily in the following c. ses.

- During a light load or no load
- · When the system inertia is low
- When the motor's secondary time constant is high (π, ')-ε 'ficiency motor)
- When carrier frequency is high

(Note) The hunting phenomenon at a freque of the suppressed.

Demagnetising control operating collage

B35-1

Demagnetising current limit \ \ \ \ \ \ \ \

B35-2

Demagnetising current control proportional gain

B35-3 B35-4 Demagnetising current convol integral time constant

B35-5

Flux temperature compensation range

B36-0 to

Flux temperature compensation time constant

Demagnetising current table 0 to 4

All these above mentioned parameters are related to PM Motor control. Please check the manual FCST3307 of the optional encoder interface for PM motors, type U2KV23DN3.

B40-0~1

Software option functions

The program ramps, pattern operation, traverse, PID and multi-pump functions can be selected with parameters B40-0 and B40-1, as shown below. (use only one at a time)

B40-0 = 1: All software functions are disabled

2: Program ramp function (B41-0 to B42-7)

3: Pattern run function (B50-0 to B59-3) 4: Traverse function (B45-0 to B45-6)

B40-1 = 1: All software functions are disabled

2: PID

(B43-0 to B43-4)

3: Multipump

(B43-0 to B44-3)

B41-0~7

B42-0~7

Program ramp – acceleration

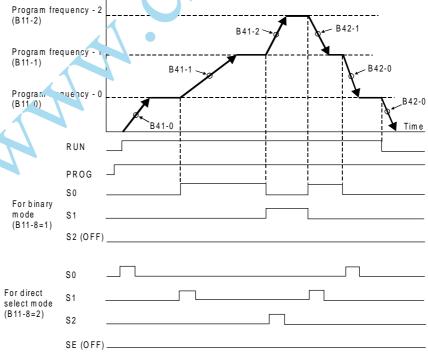
Program ramp - deceleration

The motor can be run with up to eight program frequency (speed) using the sequence commands PROG and S0, S1, S2, S3, SE. The program ramp time can also be switched at this time allowing individual acceleration or deceleration ramp for each speed.

If PROG is OFF, the program ramp time can be changed with S0, S1, S2, S3 and SE.

The ramp time selected with S0, S1, S2, S3 and SE is as shown below.

(1) For binary selection mode (B11-8=1) (1) For direct selection mode (B11-8=2)

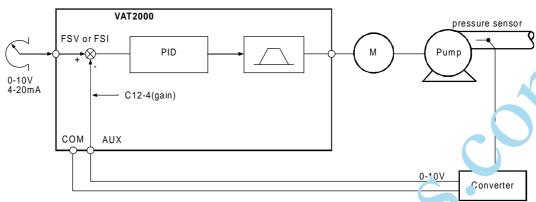

	Seque	Selected			
SE	S3	S2	S1	S0	ramp time
*	*	OFF	OFF	OFF	B41-0 B42-0
		OFF	OFF	ON	B41-1 B42-1
		OFF	ON	OFF	B41-2 B42-2
		OFF	ON	ON	B41-3 B42-3
		ON	OFF	OFF	B41-4 B42-4
		ON	OFF	ON	B41-5 B42-5
		ON	ON	OFF	B41-6 B42-6
		ON	ON	ON	B41-7 B42-7

*	:	SE	and	S3	are	not	used.
---	---	----	-----	----	-----	-----	-------

	Seque	Selected			
SE	S3	S2	S1	S0	ramp time
OFF	OFF	OFF	OFF	OFF	Latest alue
OFF	OFF	OFF	OFF	ON	L +1-0 B42-0
OFF	OFF	OFF	ON	OFF	941 b42-1
OFF	OFF	ON	OFF	OFF	B41-2 B42-2
OFF	ON	OFF	0/-F	OF:	B41-3 B42-3
ON	OFF	OFF	OF	√FF	Latest value
ON	OFF	OFF	OFF	ON	B41-4 B42-4
ON	OFF	CFF	ON	OFF	B41-5 B42-5
ON	OFF	ON	OFF	OFF	B41-6 B42-6
NC	Oi	OFF	OFF	OFF	B41-7 B42-7
\A/k	CO 45	C2	-11 OFF	41 1-4-	act ramp time

When S0 to S3 are all OFF the latest ramp time s at value is hold. After power ON the latest value is cleared to "0"

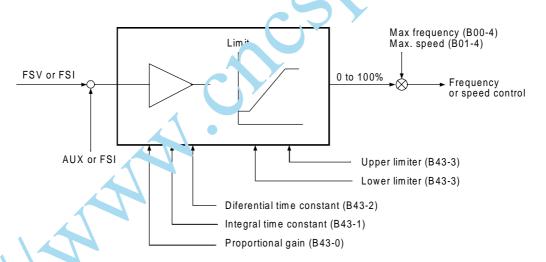
An example of combination with the pargram frequency (speed) setting is shown below.



(Note) The acceleration/deceleration ramp time-2 (B10-0, 1) will be selected by turning the sequence command CSEL ON even when using the program ramp (B40-0=2).

B43-0~4

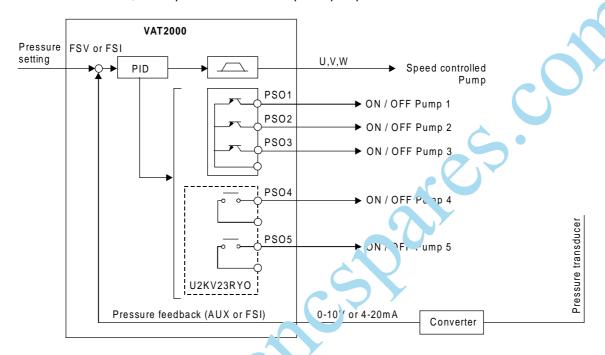
PID control


The analog input (FSV, FSI, AUX) can be configured as a feedback loop as shown below. The below is an example. It is possible to use any analog input either as setting or feedback.

Example of PID control configuration

- (Note 1) PID control functions only in the remote mode (LC) LED 27-7
- (Note 2) PID control functions in respect to the sequence command FRUN or RRUN, but does not operate with other sequence commands like Jog for example

The PID operation block is shown below,

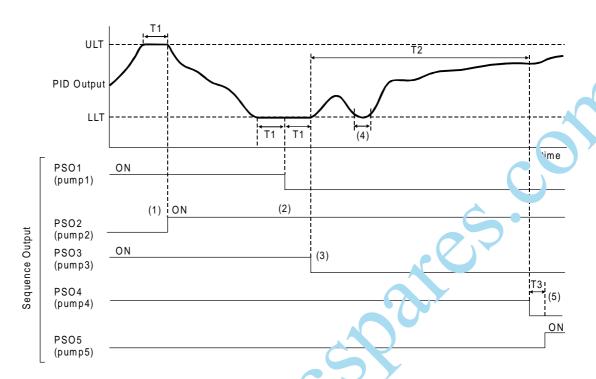

- (1) 's possible to enable or disable the PID control during operation by switching ON or OFF the sequence input function PIDEN. This can be controlled by one of the programmable digital inputs.
- (2) Refer to fig 5-9 and select the PID's setting input.
- (3) Set the analog input to be used as feedback with C07-5. Set the range of the selected analog input with block parameters C12.
- (4) If the feedback signals must be 4-20mA type, use FSI as feedback. However would be possible to use AUX for 4-20mA signals, setting C12-2=2 to fix AUX input in range of 1-5V, and then connect a external resistor of 250 Ohms, 1%, 1/2W, between AUX and COM terminals.

B44-0~3

Multipump control

Multi-pump control refers to operating up to six pumps in one water system, one pump is variable speed controlled and up to five more controlled ON/OFF by the digital outputs provided in the VAT2000. The water pressure in the pipe system is controlled to be constant according the setting input in the VAT2000's PID.

As standard the drive provide control up to 3 ON/OFF controlled pumps. By using optional card U2KV23RYO, then operation is allowed up to 5 pumps


Example of system configuration

(when operating five ON/OFF control pumps)

Note: PIDEN function (Cu. a) must be activated for multipump control operation

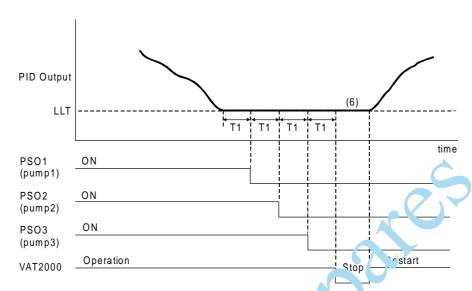
1) Multipump control operation

An example of actual operation for the multipump control is shown below.

ULT: PID output upper limit value in /AT2000 LLT: PID output lower limit value in VAT2000

T1: Holding time

T2: Continuous operation time limit


T3: Changeover time

The ON/OFF control of multiple pumps is carried out so that the operation time of each pump is equal.

- (1) When the 200 output reaches ULT for a time T1, the pump 2 with the shortest operation ime turns ON (through PSO2 output).
- (2) When the PID output reaches LLT for a time T1, the pump 1 (PSO1), with the longest operation time turns OFF.
- (3) Following (2), when the PID output still hold at LLT for a time T1, the pump 3 (PSO3) with the longest operation time turns OFF.
- (4) ON/OFF pumps changeover is ignored If the PID reaches LLT or ULT for a shorter time than T1
- (5) If the time that the pump's ON/OFF control is carried out reaches T2, the pump 4 (PS04) with the longest operation time will turn OFF, and the pump 5 (PSO5) with the shortest operation time will turn ON after T3.

Other restrictions related to the pump's ON/OFF control are given below.

(6) When the PID output reaches LLT, the pumps will sequentially turn OFF from the pump having the longest operation time. However if there are no pumps to turn OFF, the VAT2000 will stop. When the PID output rises and leaves LLT, the VAT2000 will resume operation

VAT2000 automatic operation (three N/CFF control pumps)

- (7) When the operating VAT2000's command (RUN) it ins OFF, all commands for the pump function will simultaneously turn OFF.
- (8) If a fault occurs in the inverter, inclosuring operation will take place.
 - As long as the operating command RUN is held in ON state, the pump's control
 ON/OFF will be held. Equalisation of each pump's operation time will also be
 continued.
 - When the operating command RUN turns OFF, all commands for the pump will simultaned sty turn OFF.
- (9) When the invences power is turned OFF, the operation time history for each pump will be lost.

2) Preparation ir operation

(1) Set the number of pumps to be ON/OFF controlled in parameter B44-0.

The to five pumps can be set. The relation of the pump No. recognised in the inverter and the output terminals is as follows.

PUMP No.	Relay output t	terminals
1		PSO1
2	Standard	PSO2
3		PSO3
4	Option	PSO4
5	Орион	PSO5

The pumps are started in the order of pump No. 1 to 5. The digital outputs not being used for ON/OFF control can be used as normal programmable outputs.


- (2) The multi-pump control, uses the PID function. Refer to the explanation given for the parameters B43-0 to 4. The PID is enabled setting PIDEN function to ON. The multi-pump control is always carried out in the remote mode (LCL OFF), through RUN, RRUN commands.
- (3) Refer to section (1) and set the parameters B44-1 to 3.
- (4) By using the setting interlock function (C20 = 0 to 3), the VAT2000 run/stop can be controlled by the pressure command input (FSV, FSI). In this case, the signal command (RUN-R.RUN) should be always ON.

 Refer to the explanation on C20-0 to 3

B45-0~6

Traverse run

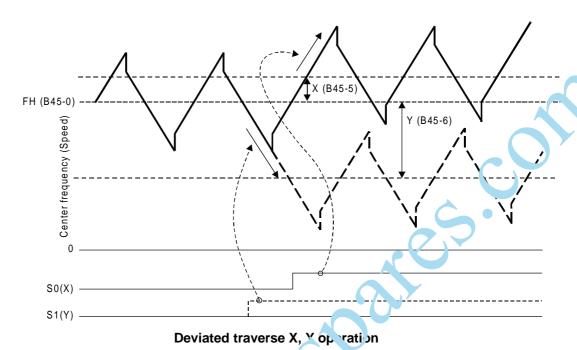
Traverse function allows operation in which the frequency fluctuates with the pair is shown below. This is effective for evenly winding up the thread on a bobbin in a weaving system.

1) Traverse run

- (1) To carry on verse run, turn the sequence command PROG ON.
- (2) If the sequence command RUN or R RUN is turned ON, the machine will accelerate at the cushion (A01-0) at the center frequency (speed), and then traverse run will start.
- (3) Wing RUN (or R RUN) is turned OFF, the machine will decelerate to a stop with the usnion (A01-1).
- (1) During traverse operation, the conventional cushion, S-ramp, overcurrent limit (OCL) and overvoltage limit (OVL) will not function. However, these will function while accelerating or decelerating during start or stop.
- (5) The traverse center frequency (rotation speed) can be selected with C02-1.

C02-1 = 1: Analog fixed (C07-4)

= 2: Panel fixed (B45-0)


= 3: Sequence (S0,S1)

When using traverse run, set B11-8 to 1 (selection mode setting: binary mode). If C02-1 is set to 1, the setting from a external source selected with C07-4 will be the center frequency (speed).

When C02-1 is set to 3, and traverse run is being carried out, the operations (2) and (3) described below will take place through the sequence command S0 and S1.

2) Deviated traverse X, Y operation

The deviated traverse operation shown below takes place with the sequence commands S0 (X) and S1 (Y) during traverse operation.

The center frequency (speed) rises by \((B45-5) only while S0 (X) is ON. The center frequency (speed) lowers by \((B 15-6) only while S1 (Y) is ON. \)

3) Changing the center frequency (need) with settings from an external source

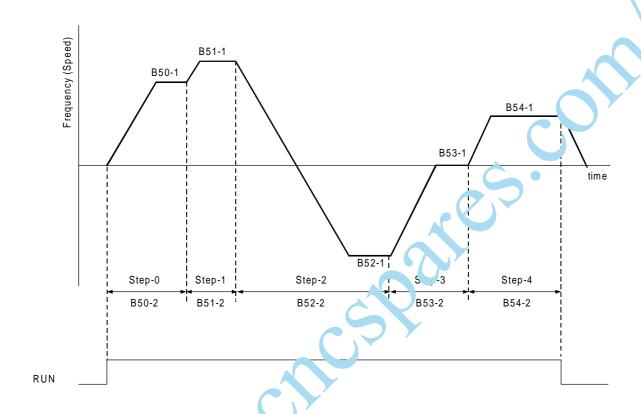
While the PROG command is ON and the traverse operation is taking place, when the sequence commands S0 and S1 oth turn ON, the center frequency value (speed) value will be the value set from an external source selected with C07-4.

If both S0 and S1 are rurned ON, the center frequency (speed) will be the value set from the external terminal. In owever, the frequency will first return to the center frequency (speed) before rising or lowering to the newly set value. After that, the same operation will take place even when the setting value is changed from an external source.

4) Prequitions for application

- (1) If he parameter No. B45-0 to 6 setting data is changed during traverse operation, the output frequency (speed) will return to the center frequency (speed) once.

 Then, traverse operation based on the newly set data will take place.


 When returning to the center frequency (speed), the output frequency (speed) will
- change at the cushion (A01-0, 1)
 (2) The overcurrent limit (OCL) and overvoltage limit (OVL) functions will not activate during traverse operation, so carefully consider the inverter capacity, motor capacity and traverse related setting values when designing the system.
- (3) The output frequency (speed) is limited between 5.00 and 100.00% during traverse operation.
- (4) When carrying out deviated traverse, take care not to turn the S0(X) and S1(Y) commands ON simultaneously.

 If turned ON simultaneously, the (3) center frequency (speed) will change.

B50-0~0 to B59-3

Pattern run function

The frequency (speed), run direction and operation time can be controlled automatically with the pattern run function

(1) A max. of ten patterns can be set. Program in the B50-B59 blocks as shown below. The remote setting input, point is selected with C02-0 = 4 n is the step No. from 0 to 9.

B5n-0 Ku. 7 ode

= 0: Stop

1: Forward run

= 2: Reverse run

= 3: Final step (set when repeating before B59)

B5n-1: Run frequency or speed (%)

B5n-2: Run time (sec)

B5n-3: Return destination step

= 0 to 8

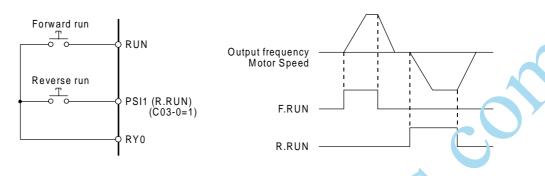
(Set the No. of the step to be executed next when B5n-0=3.)

- (2) The sequence command functions will be as shown below during pattern running.
 - RUN: Pattern run starts when RUN turns ON. The operation starts from the run speed and operation time applied when the operation was previously stopped.
 - **Note 1)** The pattern running operates with the remote mode (LCL OFF).
 - Note 2) The R.RUN, F.JOG, and R.JOG commands are invalid during pattern running.
 - S0: Proceeds to the next step at the edge from OFF to ON. (Skip).
 - S1: The internal timer operation will hold when S1: ON. Use this to fold the function. By turning this signal ON/OFF with S0 ON (hold), the step can be proceeded in synchronisation with the peripheral machine regardless of the internal time
 - S2: If this signal is ON, the operation will be reset to step 0.

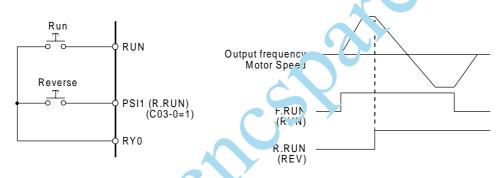
The S0 and S1 functions are valid only when RRUN is ON. The S2 function is not related to the ON/OFF setting of RUN, and is valid at all times.

When the drive is changed to local mode (LCL ON), the pattern run function is reset to step 0. During pattern run, set B11-8 to 1 (selection mode setting believe).

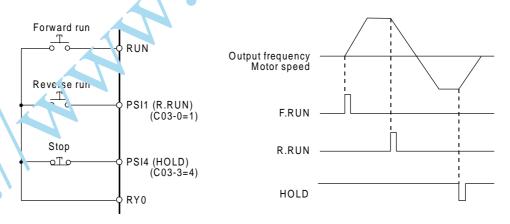
(3) When using pattern run, the sequence status output D(4 1) ACC and DCC functions will change as shown below.


ACC: Turns ON when the last step of the pattern run is being executed. (EOS)

DCC: Operates with the reverse logic on the above


C00-0

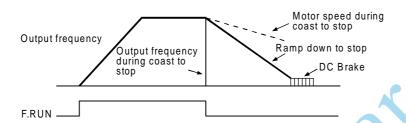
Run command method


C00-0 = 1; F.RUN, R.RUN

C00-0 = 2; RUN, REV

C00-0 = 3; Self hold

C00-1

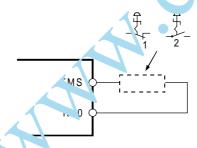

C00-2

RUN/STOP methods Jog stop method

- = 1: Coast to stop
- = 2: Deceleration to stop (Ramp down to stop)

Coast to stop refers to stopping by turning the VAT2000's output OFF at the stop command time. The motor will slow down by inertia

Deceleration stop refers to stopping the motor by decreasing the VAT2000's output according currently ramp down time adjusted. The VAT2000 injects a DC Voltage when to motor reaches minimum speed. (all parameters are adjustable).



(Note) To restart after coast to stop, confirm that the motor has stopped. The inverter may trip if attempted when the motor is running. Tor \(\) /f control)

C00-3

Emergency stop (EMS) input logi

- = 1: Close to stop (when a contact is connected)
- = 2: Open to stop (when b contact is connected)

C00-4

Emergency stop (EMS) mode

The emergency stop comand can be adjusted according the following actions,

- = 1: Coast to stop, without fault output
- = 2: Coast to stop, with fault output (When the EMS signal turns ON, the output will be shut off, and FLT will be ON.)
- = 3: Ramp down to stop (without fault output)

Control source switchover method (J1 setting)

J1 setting =1: OFF =2: ON

Select whether to use the terminal block input signals with the local operation mode.

Refer to section 5-5 for details.

C00-6 Control source switchover method (J2 setting)

J2 setting =1: OFF =2: ON

Select the auxiliary command input when the COP command is ON.

Refer to section 5-5 for details.

C02-0~8 Various setting input selection

Refer to section 5-9 for details.

C03-0~7 Sequence input terminal function – 1

C04-0~9 Sequence input terminal function – 2

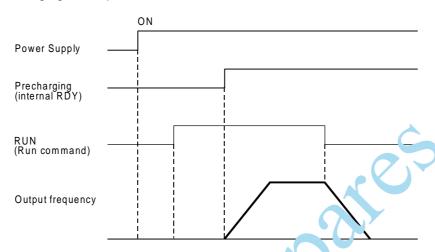
C05-0~9 Sequence input terminal function – 3

C06-0~8 Sequence input terminal function 4

Refer to section 5-3, 5-6 for details. Fig. or come explanation for B06-0 to 6 (ratio interlock

bias increase /decrease function) for etail on C03-7 and C05-3 to 4.

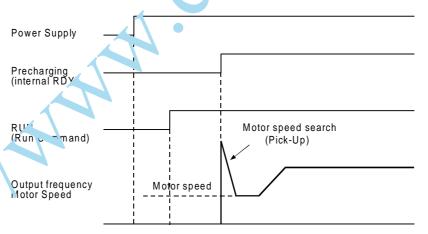
C07-0~9 Analog input terminal function


Refer to section 5-7 for details.

C08-0

Automatic start.

- = 1: OFF (The drive starts when run command is given after pre-charging. Run commands before that the power ON sequence is completed will be ignored)
- = 2: ON without pick-up


If the run command is ON at the power ON time, then the drive will start once the precharging is completed.

= 3: ON with pick-up (flying start)

If the run command is ON at the power CN time, then the drive will start once the precharging is completed, enabling the pick-up function. This mode is useful to start after a power interruption.

When the drive is used as vector control with sensor, the pick up is not needed even if the motor is rotating when the drive re-starts. In this case set C08-0 to 2

For V/f control, sensorless control C30-0=1,2,3

(Note) If auto start is used, undervoltage fault will not be detected. However, EC0~3 will output the undervoltage code.

C09-0 Parameter protection

Set this parameter to prevent unintentional operations from operation panel. Changing of the data can be protected per function group with the setting value as shown below.

O: Unprotected (changeable)
x: Protected (unchangeable)

value	Block		Block	k B, C	
value	Α	Basic	Extn.	S/W	H/W
1	0	0	0	0	0
2	×	×	×	×	×
3	0	×	×	×	×
4	0	×	0	×	X
5	0	×	0	0	×
6	0	0	0	9)
7 ~ 8	×	×	×	6	×
9	0	0	0	0	0

(Note 1) Set 2 to lock all changes.

(Note 2) Set 1 to allow all changes. The 9 setting is for me er number ance, do not set it.

C09-1 Operation panel lock

FWD , REV , STOP key operations a e projected.

- = 1: All operation possible
- = 2: All operation lock

Note, the motor will stop when the COP key is pressed for two seconds

= 3: Only STOP key can be operated.

C09-2 LCL switchover protection

C09-F

= 1: LCL mode vitchover (STOP + SET) during running disabled

(Note) Even when stopped, if the terminal block's RUN, R.RUN, F.JOG or R JOG is ON, switchover to remote is not possible.

= 2: LCL mode switchover (STOP + SET) during running enabled

Fault history buffer clear

The fault history details can be cleared by setting the value to 1 and then pressing SET key. This setting will not be registered in the internal memory. Thus, this parameter must be set each time.

Nothing will occur if set to a value other than 1.

Use this before handing the unit over to the final user.

C09-7

Default value load

All values per function group are changed to the default values.

- 9: All default values load (excluding maintenance)
- 10: Parameter A
- 11: Parameters B, C basic functions
- 12: Parameters B, C extended functions
- 13: Parameter B software option function Parameter C hardware option function
- 14: Parameters B basic functions
- 15: Parameters B extended functions
- 16: Parameter B software option function
- 17: Parameters C basic functions
- 18: Parameters C extended functions
- 19: Parameter C hardware option function

Nothing will occur when values other than the above are set.

This parameter setting value will not be registered in the internal nemory

The setting values exceeding 2000 are codes for maler maintenance, so do not set. Otherwise, the internal factory adjustments may be lost and consequently the drive will become unadjusted.

C10-0~7

Custom parameter register

Set the No. of Block B, C parameter to Louis yed on A04-0~7. To set block B parameter B10-1, set s 0.11.

To set block C parameter C14-0 set as 1.14.0.

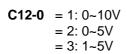
Refer to section 4-7 for details.

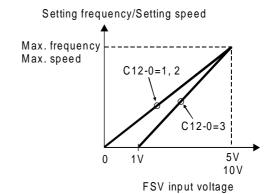
C12-0	
-------	--

C12-1

C12-2

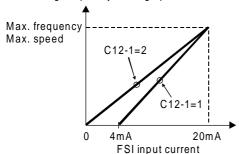
C12-3

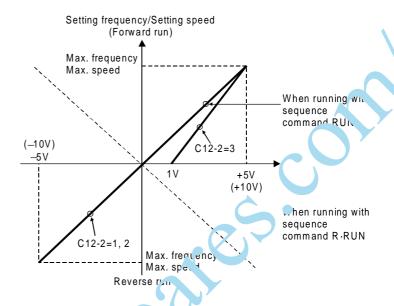

FSV terminal input ... ade


FS1 terminal input mode

AUX terminarut mode

Filter time constant for FSV/FSI and AUX input

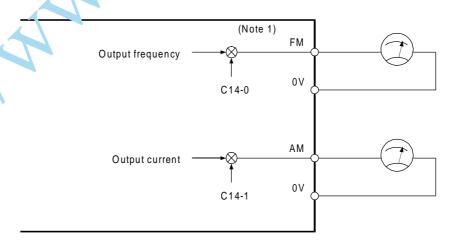

As an example, the analog input value through FSV, FSI and AUX (C07-0 = 2 to 4) and speed setting ratio is shown below. Refer to section 5-7-1 for additional details



C12-2 = 1: 0-
$$\pm$$
 10V
= 2: 0- \pm 5V
= 3: 1-5 V

Setting frequency/Setting speed

C12-3 = 1: 8ms = 2: 32ms

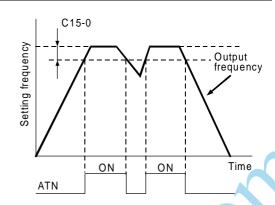

Fluctuation of the setting value caused bye, e.c., can be suppressed increasing the time constant by parameter C12-3

C13-2~5

PSO output terminal parameter

Refer to section 5-6-1 for details.

C14-0 C14-1 Output gain for AM

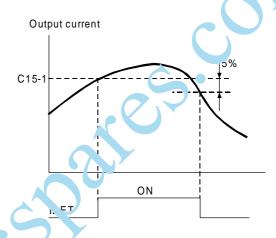

(Note 1) The maximum output voltage of the FM and AM outputs is approx. 11V.

If a large value is set in C14-0 and 1, a voltage exceeding 11V will not be output.

C15-0

Attainment (ATN) detection width

The attained output ATN operation width is set.



C15-1

Current (IDET) detection level

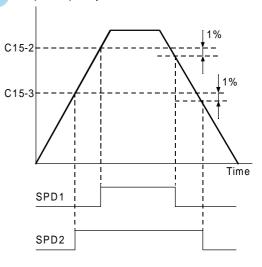
The current detection (IDET) operation level is set. Set with a percentage of the rated current (B00-6, B01-6).

A 5% hysteresis is fixed for the IDET operation.

C15-2

C15-3

Speed detection (SPD 1) level 1 Speed detection (SPD 2) level - 2

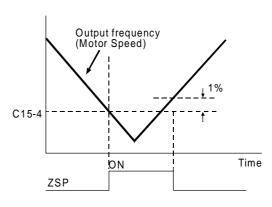

The speed detection SPD 1 and 2 or eration level is set.

Set with a percentage to the max. frequency (B00-4) or max. speed (B').

The output frequency of the motor speed will be the comparison target.

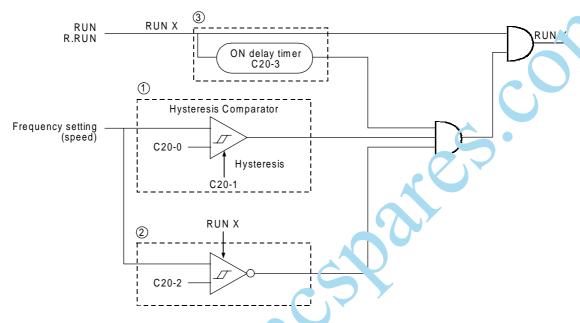
A 1% hysteresis is 1. ed for SPD1 and SPD2 operation.

Output frequency


C15-4

देero speed detection (ZSP) level

The zero speed detection ZSP operation level is set.

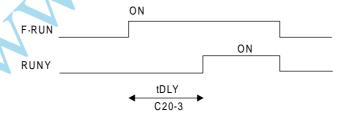

Set with a percentage to the max. frequency (B00-4) or max. speed (B01-4).

The output frequency or the motor speed will be the comparison target.

C20-0	Start/stop frequencies (speeds)
C20-1	Start/stop frequency (speed) hysteresis
C20-2	Interlock frequency (speed)
C20-3	Run delay timer

The following types of interlock can be obtained for the run RUN and R-RUN commands.

(1) Setting start/stop function


The motor will run when the freq ency (speed) setting is higher than the C20-0 setting value, and will stop when lower.

Starting and stopping with the setter is possible with this function.

(2) Start interlock

If the frequency (speed) setting value is larger than C20-2 when the run command (RUN X) is ON, the recommend results of the command (RUN X) is ON, the recommendation of the command (R

(Note) The setting a art/stop and start interlock functions cannot be used simultaneously. Thus, set C20-0 or C20-2 to 0.

(3) Run delay timer

The motor will be delayed from the run command (RUN X) by the time set in C20-3.

This is used for synchronisation with peripheral machines such as mechanical brakes. The run delay timer will not function in the jogging or local modes.

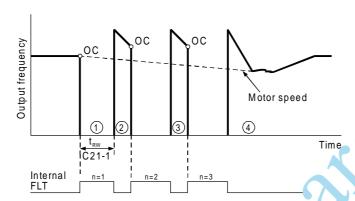
(Note 1) Set the parameter setting values to 0 when not using (1),, (2) or (3).

(Note 2) The (1), (2) and (3) functions will not function during jogging run.

(Note 3) The (3) function will not function during the local mode.

(Note 4) When interlock is applied on (1), (2) or (3), the FWD or REV LED will flicker.

C21-0


C21-1

Number of retries

Retry wait time

Retry is a function that performs its own fault reset and restarts with pick-up. Is possible to set the number of retries, and the wait time (t_{RW}). An IO-4 fault will be output if the operation is not possible after the programmed re-tries.

The retry is effective against power module ([-1, -1] - n), overcurrent ([-1, -1] - n), overvoltage ([-1, -1] - n), overload ([-1, -1] - n), overheat ([-1, -1] - n), and ground fault ([-1, -1] - n) errors.

- 1 Waiting time after trip by Overcurrent
- 2 3 Pick-up and retry
- (4) Pick-up achieved and retry finished
- (Note 1) If C21-0=0, retry will not function.
- (Note 2) The FA-FC relay output vil star open during retry, but will not function.
- (Note 3) OVT retry may not function correctly if the DC voltage drop is slow.
- (Note 4) If the run command turns OFF during retry, the retry will be cancelled, and the FA-FC relay contact will be n ON.
- (Note 5) The pickup operation is not carried out during vector control with sensor (C30-0 = 4.5).

CAUTION

When a fault occurs on an extremely rare case, this function automatically resets the fault and restarts the operation.

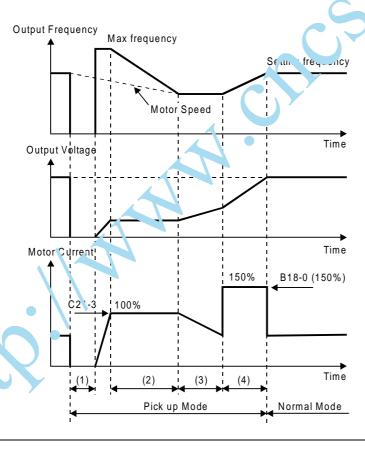
If the fault occurs frequently, the inverter could be damaged, so first remove the cause of the fault.

C21-2 Pick-up wait time

The wait time t_{PW} is a safety delay to ensure that the pick-up operation is enabled a time after the output is cut off, once the motor residual voltage is disappeared.

The residual voltage is a voltage generated by the motor after the inverter output turns OFF, and will be abated in approx. 1 to 3 seconds, but will take longer if the motor capacity is large.

C21-3 Pick-up current limit value


This is the current limit value exclusively used during pick-up. Normally, set 100%. Adjust within the following range only when the output torque at restart must be limited.

C21-3 Setting value ≥ Applicable motor excitation current (%) + 10.00 (Normally 30 to 40%)

<Pick-up operation>

Pick-up starts when F.RUN or R.RUN is ON in the PICK ON state, or when to a power is turned on while auto start with pick-up is enabled (C08-0=3).

The pick-up operation is carried out with the overcurrent limit function as shown below.

- (1) Pick-up waiting time C21-2
- (2) Pick-up current limit
- (3) V/f match
- (4) Re-acceleration after V/f match

C22-0

C22-1

C22-2

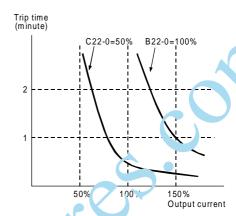
Overload setting (L0)

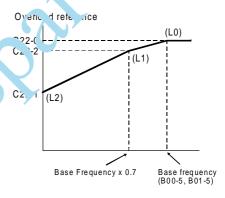
0Hz overload (L2)

0.7 Fbase freq. overload (L1)

These are setting parameters for the overload (OLT) function.

The reverse time interval characteristics will change with the C22-0 setting as shown on the right.


The setting uses the motor rated current (B00-6, B01-6) as 100%.


(Note 1) Do not set a value that exceeds the inverter rated current.

When running a self-cooling type motor at a low speed, set C22-1 and C22-2 according to the motor characteristics. The characteristics will be as shown on the right.

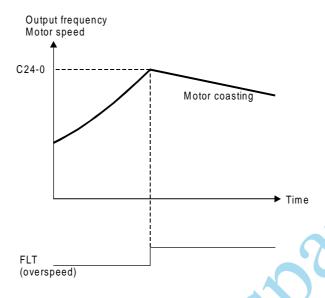
- (Note 2) At 1.0Hz or less, the inverter will trip at 75% of the inverter's rated current in one minute.
- (Note 3) If the inverter output current exceeds 155%, the inverter will trip at 170% the rated current in 2.5 seconds.
- (Note 4) The above overload characte istic apply to V/f control (constant torque load) (C30-0 = 1), sensor-times vector control (C30-0 = 3), and vector control with sensor (C30-0 = 4).

 Refer to section 6-7 for the overload characteristics when V/f control (variable torque load) is selected (C30-0 = 2).

C22-4

Motor loss b. king setting

This parameter sets output voltage increase at the base frequency, in percentage respect to the rated output voltage (B00-3). Normally, this is set to 50% of the specified value.


When the DC voltage attempts to rise due to deceleration operation or a regenerative load, the n otor loss braking function raises the inverter output voltage and decreases the motor efficiency to prevent tripping by an overvoltage. This function is valid only when the motor loss braking is selected with the DBR option selection (C31-0 = 3, 4) in the V/f control mode (C30-0 = 1, 2).

- (Note 1) Take care to motor heating.
- (Note 2) If the normal V/f setting is inappropriate, the motor efficiency will increase when the voltage is increased and thus tripping by overvoltage could occur easily.

C24-0

Overspeed protection level

This parameter set the overspeed protection level, as a percentage in respect to the maximum frequency (B00-4) or maximum speed (B01-4). The output frequency or motor speed is the target for comparison.

C24-1

Control mode changeover during speed detection error

This is valid when vector control with sen or (30-0) = 4) is selected.

- = 1: The speed detection error is disa led.
- = 2: The speed detection function is encoded. Then if an error occurs, a fault (FLT) is output and the motor coasts to a sop.
- = 3: The speed detection error is chabled, and if an error occurs, a minor fault (ALM) is output. The control changes from the vector control with sensor to the sensor-less vector control, and control is continued. When the speed detection returns to the normal state, the control changes again from the sensor-less vector control to the vector control with sensor, and the minor fault output is cleared. The presence of a minor fault is to a speed detection error can be confirmed through the minor fault monitor (205-0).

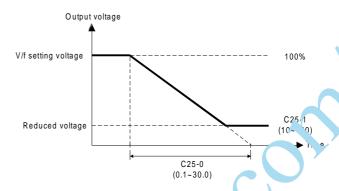
C24-2

C24-3

Speed detection error level Speed detection error recovery level

This is valid when C24-1 = 3.

Set as a percentage in respect to the maximum speed (B01-4).


If the deflection of the speed detection value per 2ms increases above the value set with C24-2, it is judged as a speed detection error, and the control changes from the vector control with sensor to the sensor-less vector control. After changing, when the deflection of the speed estimated value for sensor-less vector control and the speed detection value drops to below the value set with C24-3, it will be judged that the speed detection has returned to the normal state. The control changes again from the sensor-less vector control to the vector control with sensor.

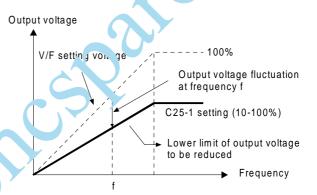
C25-0

High-efficiency operation Voltage reduction time [sec]

This setting value is the time to reduce the output voltage from the V/f setting value to 0V after the output frequency reaches the set frequency.

Normally, set the specified value (1.0). When using for loads with sudden torque fluctuations, and the output frequency drops remarkably with the overcurrent limit function, set a lower value. If the rotation becomes unstable during the voltage

reduction or recovery operations, even causing a trip, set an higher value.


C25-1

High-efficiency operation Voltage lower limit setting value [%]

Set a value between 10 and 99 while the inverter is stopped to select the high-efficiency operation function.

When not using the high-efficiency operation function, set 100 while the inverter is stopped.

This setting value is the lower limit of the output voltage reduced when the high-efficiency operation function is selected, and uses the V/f setting voltage (output voltage when not using high-efficiency operation) as the reference.

Normally, the minimum value (10) is set. When using for loads with sudden torque fluctuations, and the out frequency drops remarkably with the overcurrent limit function, set an appropriately the value.

high-efficienc; peration principle

Normally for the V/f constant operation, the no-load loss is large with a light load, and the motor efficiency drops remarkably. Thus, according to the load, the output voltage is reduced using the C25-1 setting value as the lower limit in respect to the voltage set with V/f, and the motor cff iency is improved.

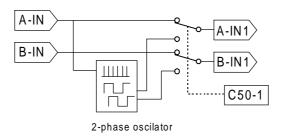
(Not?) Slipping will increase during high-efficiency operation, so it is recommended to execute automatic tuning before operation and set the automatic torque boost selection to valid (A02-1 =2).

Ĉъ `-0

DBR option selection

Select the usage of the motor loss braking and DBR resistor (built-in or external).

Refer to the explanation on the motor loss braking setting (C22-4) for details on the motor loss braking function.


The motor loss braking function is valid only when the V/f control mode (C30-0 = 1, 2) is selected.

C50-1

Encoder output pulse No. selection

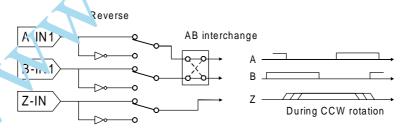
The No. of encoder pulses (2-phase or 1-phase) is set.

The function to convert a 1-phase pulse signal from a proximity sensor, etc., into a 2-phase pulse is validated or invalidated.

- =1: This is set when using an encoder that outputs a 2-phase pulse having a CJ^o phase difference. The rotation direction can be acknowledge, and the need can be stable controlled even at low speeds.

 Set the No. of pulses for one phase in the No. of encoder pulse (**,01-8).
- =2: This is the set when using an encoder that outputs a 1-base pulse.

 Connect the input pulse to only the A phase, and always bave one phase disconnected. With the 1-phase pulse mode, the rotation direction, recognised as the operating command direction. The forward run and reverse run directions are not known.


 A speed detection error could occur due to the offect of chattering in low speed areas, so use the a 2-phase encoder when we fing at low-speed run or forward/reverse run.

(Note) The 1-phase pulse mode cannothe unwith the PM control mode.

C50-2

Encoder ABZ pulse type selection

When using the 2-phase pulse, the rotation direction is judged by the advance and delay of the 2-phase pulse. With the VAT2000, the encoder pulse is defined as shown below during forward run. (The Z-phase pulse is the zero point position detection and is used only for PM motor control). When using an encoder with different signal specifications, use this setting to reverse the signal or content the signal using the interchange function.

Pulse conversion circuit

Definition of VAT2000 encoder

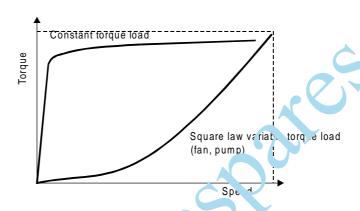
The signal conversion circuit is according the following combination.

Setting No.	A-IN Direct/	B-IN Direct/	Z-IN Direct/	AB inter-
NO.				
	Inverse	Inverse	Inverse	change
0	Direct	Direct	Direct	
1	Inverse	Direct	Direct	
2	Direct	Inverse	Direct	No inter-
3	Inverse	Inverse	Direct	change
4	Direct	Direct	Inverse	
5	Inverse	Direct	Inverse	
6	Direct	Inverse	Inverse	
7	Inverse	Inverse	Inverse	
8	Direct	Direct	Direct	
9	Inverse	Direct	Direct	
10	Direct	Inverse	Direct	AB inter-
11	Inverse	Inverse	Direct	change
12	Direct	Direct	Inverse	
13	Inverse	Direct	Inverse	
14	Direct	Inverse	Inverse	
15	Inverse	Inverse	Inverse	

C51-0

Encoder UVW pulse type selection for Permane Magnet motor (PM)

A position encoder which outputs a 3ph 180° square wave is u...d for permanent magnet motors. Check PCST3301 manual of optional U2KV23D, '3 .../l encoder card.


6-7 Application to square low variable torque load

6-7-1 Specifications for square low variable torque load

A load having characteristics in which the load torque varies with the speed, as a fan or pump, is called a square law variable torque load. The torque curves of the constant torque load and square torque load are shown below.

CAUTION

The variable torque specifications must be applied to square variable loads such as fans and pumps. The constant torque specifications must be applied for all other types of loads.

Torque cui 'e

The specifications for both constant torque load and square law variable torque load are shown in Appendix 1. Hereafter, the square law variable torque load characteristics will be called the variable torque.

6-7-2 Selection of load characteristics

Select the load characteristics by setting the following parameters.

Table

No.	Name	Default value	Min. value	Max. value	Unit	Function
C30	C30 - Control mode selection					
0	Control mode selection	1.	1.	5.	_	= 1 : V/f control (constant torque: overload characteristics 150% for one minute.) = 2 : V/f control (variat torque: overload characteristic 120% for one minute.)

- (1) The default setting is for constant torque load characteristics, so change the setting according to the application. When this parameter is set, some others like limits or current raings shift to specific default values given for CT or VT control mode, so this parameter must be set prior than any other parameter.
- (2) This parameter is not affected by C09-7: default value load.
- (3) The parameters with setting values and setting ranges that s'... when this parameter is selected are shown below.

Table

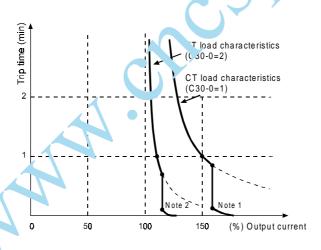
Name	Default value	Min. valo	M≈ (. value	Unit	Function
A02 - Torque boost					
Manual torque boost setting	(Note 1)	0.0	20.0	%	Setting of torque boost at 0Hz.
DC brake					
DC braking voltage	(Note)	0.1	20.0	%	
Output rating					
Constant torque	Note 2) Inverter rating	rated co	urrent	A	Overcurrent limit OLT, current % display, meter output reference value
Variable to, , 'a		rated co	urrent		
B18 - Overcurren' limit					
Constant torque	150.	50.	300.	%	
Va jabie torque	105.	50.	120		
	Torque boost Manual torque boost setting DC brake DC braking voltage Output rating Constant torque Variable torque Overcurren' limit Constant torque	Torque boost Manual torque boost setting DC brake DC braking voltage Output rating Constant torque Variable torque Overcurren' limit Constant torque 150.	Torque boost Manual torque boost setting DC brake DC braking voltage Output rating Constant torque Variable torque Variable torque Overcurren limit Constant torque Value Val	Torque boost Manual torque boost setting DC brake DC braking voltage Output rating Constant torque Variable torque Variable torque Constant torque Variable torque Torque boost (Note 1) Torque boost Torque	Torque boost Manual torque boost setting DC brake DC braking voltage Output rating Constant torque Variable torque Torque boost (Note 1) Output 7 Inverter rating Variable torque rated current x 0.3~1.0 Variable torque rated current x 0.3~1.0 Overcurrent limit Constant torque 150. 50. 300.

(Note 1) The default value differs according to the inverter capacity and load characteristics selection.

(Note 2) For the inverter rating value, the constant torque rated current value and variable torque rated current values given in Appendix 1 will apply.

Table

No.	Name	Default value	Min. value	Max. value	Unit	Function
C22 -	- Overload			I.	- I	
0	Overload setting				%	The C22-1, 2 data will be
	Constant torque	100.	50.	105.		limited by this value when this
	Variable torque	100.	50.	100.		value is changed.
1	0Hz overload				%	The max. value is the value of
	Constant torque	100.	20.	105.		C22-2.
	Variable torque	100.	20.	100.		
2	0.7 Base freq. overload				%	The max. value is the value of
	Constant torque	100.	50.	105.		C22-1.
	Variable torque	100.	50.	100.		


- (Note 3) When the load characteristics are changed, the above parameters will be problem set to the default values, so reset them when necessary.
- (Note 4) For parameters other than above, the default value and setting range will not change when the load characteristics are selected.

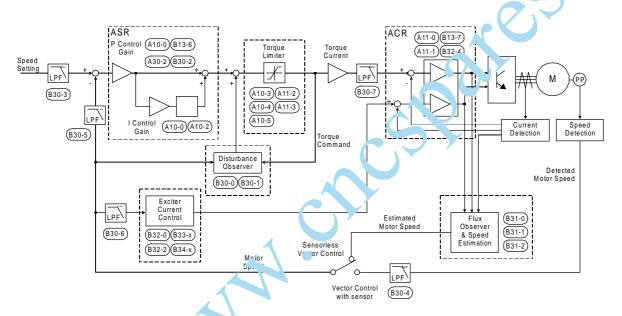
6-7-3 Overload Characteristics

The overload detection curve changes according to the load characte. stics selection.

The overload characteristics for when the overload setting (C22-c) is 100% are shown below.

The motor rated current (B00-6) is the reference for the current value (%).

Overload characteristics


- (Note 1) When the constant torque lead characteristics are selected, the trip will occur at the following:
 - (1) When 1.0Hz or less, at the reverse time interval characteristics of 75%, 60s of the constant torque rated current.
 - (2) When 155% of the constant torque rated current is exceeded, at the reverse time interval characteristics of 160%, 10S and 170%, 2.5S.
- (Lote 2) When the variable torque load characteristics are selected, the trip will occur at the following:
 - (1) When 1.0Hz or less, at the reverse time interval characteristics of 75%, 24s of the variable torque rated current.
 - (2) When 120% of the variable torque rated current is exceeded, at the reverse time interval characteristics of 125%, 7.5S and 135%, 0.94S.

6-8 Adjusting the vector control speed control related parameters

With the VAT2000, ASR operation is possible by executing automatic tuning and setting simple speed control parameters. However, when carrying out high-response or high-accuracy control, the parameters must be adjusted in detail. In this section, the configuration and adjustment parameters of the speed control system is explained.

6-8-1 Speed control system for Induction Motors

The speed control system of VAT2000 is configured of blocks as shown below. Automatic tuning is used for adjusting the exciting current control, current regulator, flux observer and speed estimation mechanism, so these parameters often do not need to be adjusted. However, the parameters related to the speed regulator, torque limit, load torque observer, various low path filters, etc., must be adjusted according to the user's system. Thus, these cannot be simply adjusted with automatic tuning. The must user of the system must adjust these parameters to match the system. Adjustments are callied cut while referring to the block diagram below.

VAIZE 10 speed control system block diagram

(Note) The related parameter Nos. are indicated in the above function blocks.

6-8-2 Speed regulator (IM)

The speed regulator (ASR) is configured of PI control, and has the following parameters.

Parameter No.	Parameter	Function	
A10-0	ASR response	Set the required ASR response in radians	
A10-1	Machine time constant1	Set the time to accelerate the motor and load to the base speed at the rated motor torque.	
A10-2	Integral time constant compensation coefficient	Set the compensation coefficient applied on the integral time constant of the speed regulator (ASR).	
B13-6	ASR gain compensation in constant power range	This sets the ASR P gain compensation value at the max speed. By adjusting this parameter, the ASR P can be compensated in the constant power range. If ASR hunting occurs in the sensor-less control's constant output range, set a smaller value.	
B30-2	ASR proportional change rate limit	This limit the ASR's Proportional block in the speed setting value or motor speed change suddenly.	

6-8-3 Motor Torque limit (IM)

The output torque is limited. Set an appropriate value for protecting in a side.

Drive torque limit)

Set this to a large value to increase up corque during driving. Note that the

output torque is limited by the ourput current limit (B18-0), so when set

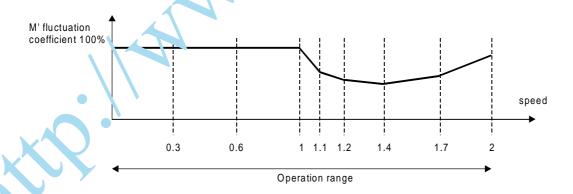
excessively, the set torque may not be attained.

Regenerative torque limit) Set this to a large value to increase the torque during regeneration. Note

that the output torque is limited by the output current limit (B18-0), so when set excessively, the set torque may not be attained. If the DBR or PWM converter, etc., are not provided and an excessively large setting is made, an overvaltage trip could occur during regeneration. In this case, lower the

regeneration to que limit setting.

Parameter No.	Paramoter	Function
A10-3	ASR drive forque ilmit	Drive torque limit in ASR control.
A10-4	ASR regenerative torque limit	Regenerative torque limit in ASR control.
A10-5	Emergency stop regenerative torque limit	Regenerative torque limit value for emergency stop in ASR Control.
A11-2	ACR drive torque limit	Drive torque limit in ACR control.
A11-3	ACR regenerative torque limit	Regenerative torque limit in ACR control.


6-8-4 Exciting current control

The exciting current is controlled to establish the secondary flux. A current reduction process in the constant output range or during voltage saturation, and high-speed magnetising control to raise the secondary flux at a high speed are also carried out.

Parameter No.	Parameter	Function
B32-0	Speed flux control selection	This is the control selection for magnetising the secondary flux to a high speed when starting operation. Select this to increase the motor speed even slightly when starting operation.
B32-2	Voltage saturation compensation selection	If the output voltage in control is larger than the voltage that can be output by the inverter, select this control of limit the exciting current to prevent the current or torque from hunting. Select this when raising the output voltage to near the input voltage, or when the input voltage of the ges. Note that if voltage saturation occurs, some torque ripple will occur. In this case, lower the BO1-9 ro-load voltage setting to avoid voltage saturation.
В33-х	Table reference speed	This is the reference speed or to the operation speed. Set as shown below to a part to the constant output range.
B34-x	M fluctuation compensation	This compensates the criting inductance fluctuation according to the Lod able reference speed. Set the compensation table so that the output voltage is constant during ro-load operation through the entire operation inge. * This is adjusted by the automatic tuning mode 4. (B19-0)

<Setting the table reference speed

M' fluctuations greatly immediately for entering the constant output range, so set using the following diagram as a reference. (The base speed is 1.)

Setting the reference speed table

6-8-5 Current regulator (IM)

The current regulator (ACR) is a PI type control, including the following parameters.

Parameter No.	Parameter	Function
A11-0	ACR response	Set the ACR response in radians. If the response is too low or too high, the current will become unstable, and the over current protection will function.
A11-1	ACR time constant	The ACR time constant is set. If the time constant is too long or too short, the current v become unstable, and the over current protection will function.
B13-7	ACR gain compensation in constant power range	This sets the ACR Proportional gain compensation values the max. speed. (above base speed)
B32-4	ACR voltage model FF selection	The voltage fluctuation caused by the leakage inductance is feed forward controlled.
		The current regulator (ACR) responships speed will be increased. Select this if the curren hunts in the high-speed operation range during sensor less and ol.

6-8-6 Flux observer and speed estimation mechanism (IM)

These are parameters used with speed sensor-less vector control

Parameter No.	Parameter	unction	
B31-0	Flux observer gain	This is the drack gain for the flux observer. If hur ing crours at the estimated speed in the high-speed operation range, adjust within the range of 1.2 to 0.9.	
B31-1	Speed estimated proportional gain	This is the proportional gain for the adaptive speed estimation mechanism. To increase the speed estimation response, set a large value. Note that if the value is too high, the speed estimation value will hunt.	
B31-2	Speed estimated in a ral gain	This is the integral gain for the adaptive speed estimation mechanism. To increase the speed estimation response, se a large value. Note that if the value is too high, the speed estimation value will hunt.	

6-8-7 Load torque observer (IM)

The disturbance load applied on the motor is calculated and the torque command is compensated.

To increase the response toward disturbance, use the load torque observer.

By setting the speed regulator (ASR) to P and using the load torque observer, overshooting can be suppressed.

Parameter No.	Parameter	Function
B30-0	Load torque observer gain	Set the observer gain for the load torque observer. To increase the responsiveness of the external disturbar re response characteristics, set a large gain. Note that if the gain is set too high, the output torque could hunt. When set to zero, the load torque observer will not function.
B30-1	Model machine time constant	Set the model machine time constant used by the dad torque observer.

6-8-8 Various low path filters (IM)

The time constants of the low path filters used for speed detection, speed commands or torque current commands, etc., are set.

By adjusting these time constants, vibration caused by noise and overshooting can be suppressed. Note that if an excessively high value is set, the control performance of the drop.

Parameter No.	Parameter	Function	
B30-3	Speed setting LPF time constant	Overshooti. g can be suppressed by setting this to the filter time cons and equivalent to the speed response.	
B30-4	Speed detection LPF time constant	The spired detection noise is cut.	
B30-5	Speed detection LPF time constant for ASR	State low path filter time constant used for the speed detection value input into the speed regulator.	
B30-6	Speed detection LPT ime constant for comp nsation	Set the low path filter time constant used for the speed detection value for constant output range compensation or iron loss compensation, etc.	
B30-7	Torque currei. command setting LF. time constant	Set the low path filter time constant used for the torque current command.	

Chapter 7 Options

7-1 Outline of options

The VAT2000 Series include the options shown below. This chapter will focus on the stand-alone options and main circuit wiring devices.

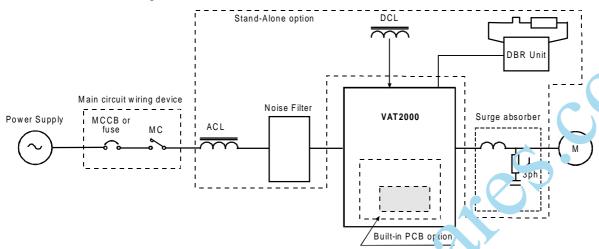


Fig. 7-1 Option configurations

Table 7-1

Item	Туре	Function
Main circuit wirin	g devices	
Breaker for wiring (MCCB) or Fuse	Select a device that matches the inverter rating. (Table 7-2.)	Always i stall his device to protect the wiring of the inverter and pulpheral devices.
Magnetic contactor (MC)	Select a device that matches the inverter rating. (Table 7-2.)	Installs device to provide an operation interlock. When using the DBR unit, always install this device to protect the DBR. (Refer to Fig. 2-4.)
Stand-alone option	ons	
ACL	ACRxxxxx (Refer to Table 7-2.)	If the capacity of the inverter's power supply transformer exceeds 10 times the inverter unit capacity, always install this device to protect the inverter. (Balance with power supply) This is also effective in improving the power factor of the inverter input and in suppressing the current high harmonics. The power factor will be approx. 0.9.
DCL	DCRxxxxx (Refer to Table 7-2.)	Install this device to improve the power factor of the inverter input. This is also effective in creating a balance with the power supply as the ACL. The power factor will be approx. 0.9.
Nc'se filt√r 'EMC ≒ii(er)	V2KFxxxxx PRxxxxx (Refer to Table 7-2.)	This device suppresses the electromagnetic noise generated by the inverter. This is required to comply with EMC The electromagnetic noise is the radiation of electromagnetic waves in the radio frequency bands and that conveyed to the power supply wires.
DBR unit	U2KV23DBUxx (Refer to Table 7-2.)	This is used when the motor is to be stopped with dynamic braking for units larger than U2KX07K5S or U2KN07K5S
Surge Absorber	ACRxxx plus RC filter	This suppress surge voltage at motor side, which may be generated, if length of output motor cable exceeds of 30mts

Table 7-1 (continued)

Item	Type &	Function	Option class
	Manual		
Speed detection 1 (complimentary compatible)	U2KV23DN1 (PCST-3299)	This is a speed detection PCB for the IM vector control with speed sensor, and is compatible with the complimentary output type encoder. Response frequency: Change between 60±10kHz and 20kHz.	I
Speed detection 2 (line driver compatible)	U2KV23DN2 (PCST-3300)	This is a speed detection PCB for the IM vector control with speed sensor, and is compatible with the line driver output type encoder. Response frequency: 250kHz (signal: A, B, Z phase)	
Speed detection 3 (PM compatible)	U2KV23DN3 (PCST-3301)	This is a speed detection PCB for the PM drive control, and is compatible with the line driver or tout type encoder. Response frequency: 250kHz (signal: A, E, Z, U V, W phase)	I
Relay interface	U2KV23RY0 (PCST-3302)	This is used to expand the contact input, utput points. Relay input : 4 points (PS.: to) 1c contact output : 2 points (PSO., 5)	III
PC interface	U2KV23PI0 (PCST-3303)	This is used to receive paral's settings from the PLC. Parallel data input : 16 b. Data length 16 12, `bits selective Format : Binary or 3CD selective Open collector ou but: ? points (PSO4, 5)	III
Serial interface	U2KV23SL0 (PCST-3304)	This is used to make Connection with serial transmission, the personal computer, etc. Transmission: RS-232C, RS-422/485Multidrop is possible for up to 32 units. Baud rate: 1200~9600 bps	III
Profibus interface		the Profibus DP communication protocol. Laud rate : 12Mbps No. of stations : 126 stations	III

The above Optional PCT's must be installed by the user. Please ask your supplier for dedicated instruction manuals.

Table 7-2 Main circuit wiring device ratings and stand-alone option types (1) (4)

CONSTANT TORQUE RATINGS

VAT2000		MCC	Line	ЕМС	Dynamic	Braking	INPUT	DC	Surge
CT Ratings	(2) (A)	(3) (A)	мс	Filter	Braking Module	Resistors (Note 5)	AC Reactor	Reactor	Absorber (6) Out. Reactor
U2KN00K4S	20	5	CL00	U2KF3016MD1	Built in	TLR405P200	ACR4A2H5	-	-
U2KN00K7S	20	5	CL00	U2KF3016MD1	Built in	TLR216P200	ACR6A2H5	-	-
U2KN01K5S	50	10	CL00	U2KF3016MD1	Built in	TLR108P200	ACR9A1H3	-	-
U2KN02K2S	60	15	CL00	U2KF3030MD1	Built in	TLR74P200	ACR12A0H84	=	-
U2KN04K0S	110	20	CL01	U2KF3030MD1	Built in	TLR44P600	ACR18A0H56	=	
U2KN05K5S	125	30	CL02	U2KF3060MD2	Built in	TLR29P600	ACR27A0H37	DCR32A0H78	-
U2KN07K5S	225	40	CL04	U2KF3060MD2	Built in	TLR22P600	ACR35A0H27	DCR45A0H55	
U2KN11K0S	225	75	CL04	U2KF3094MD3	U2KV23DBUL1	TLR15P1000	ACR55A0H18	DCR60A0H/	
U2KN15K0S	250	75	CL06	U2KF3094MD3	U2KV23DBUL1	TLR11P1200	ACR70A0H14	DCR80A0 13	-
U2KN18K5S	400	100	CL07	PR3120STD	U2KV23DBUL1	TLR8,8P1500	ACR80A0H14	DCR100A0h. 1	
U2KN22K0S	500	150	CL09	PR3120STD	U2KV23DBUL2	TLR7,4P1800	ACR97A0H11	DCK120A0H2	-
U2KN30K0S	500	150	CL10	PR3150STD	U2KV23DBUL2	TLR5P2500	ACR140A0H072	DC D4 0H17	-
U2KN37K0S	600	200	CK75	PR3180STD	U2KV23DBUL3	TLR4P3000	ACR180A0H050	CR18040H14	-
U2KX00K4S	10	5	CL00	U2KF3016MD1	Built in	TLR864P200	ACR3A8''1		ACR3A0H05
U2KX00K7S	10	5	CL00	U2KF3016MD1	Built in	TLR864P200	ACR3/. \\	-	ACR3A0H05
U2KX01K5S	20	5	CL00	U2KF3016MD1	Built in	TLR432P200	ACT 1A5h	=	ACR4A0H05
U2KX02K2S	30	5	CL00	U2KF3016MD1	Built in	TLR295P200	FOROL 14	=	ACR6A0H05
U2KX04K0S	50	15	CL00	U2KF3016MD1	Built in	TLR175P600	^CF 10 \2H	-	ACR10A0H05
U2KX05K5S	60	20	CL00	U2KF3032MD2	Built in	TLR118P6	AC R14A1H4	DCR18A2H9	ACR14A0H05
U2KX07K5S	90	30	CL02	U2KF3032MD2	Built in	TLR862600	△CR18A1H1	DCR25A2H1	ACR18A0H05
U2KX11K0S	110	40	CL04	U2KF3058MD3	U2KV23DBUH1	TLR59. 200	A. R27A0H75	DCR32A1H6	ACR27A0H05
U2KX15K0S	125	40	CL04	U2KF3058MD3	U2KV23DBUH1	7LR43P1000	ACR35A0H58	DCR40A1H2	ACR35A0H05
U2KX18K5S	175	50	CL04	U2KF3058MD3	U2KV23DBUH1	R35F 1500	ACR38A0H58	DCR50A0H96	ACR38A0H05
U2KX22K0S	225	50	CL06	U2KF3096MD4	U2KV23DBUH2	TLR∠9P1800	ACR45A0H45	DCR60A0H82	ACR45A0H05
U2KX30K0S	250	75	CL06	U2KF3096MD4	U2KV23DBL 12	T).R22P2500	ACR70A0H29	DCR80A0H58	ACR62A0H05
U2KX37K0S	300	100	CL07	PR3110STD	U2KV23DBUH3	TLR18P3000	ACR90A0H22	DCR100A0H49	ACR90A0H05
U2KX45K0S	400	100	CL09	PR3150STD	U2KV. 3DBI H3	TLR15P3700	ACR115A0H18	DCR125A0H40	ACR115A0H05
U2KX55K0S	400	150	CK75	PR3180STD	2 x J2KV::DBUH2	-	ACR115A0H18	DCR140A0H32	ACR115A0H05
U2KX75K0S	500	200	CK08	PR3280S7L	U.ADOPTDBUH0	-	ACR160A0H14	DCR180A0H25	ACR160A0H05
U2KX90K0S	700	300	CK85	PR32800 TD	UADOPTDBUH0	=	ACR185A0H11	DCR210A0H25	ACR185A0H05
U2KX110KS	800	300	CK09	PR33.'0STD	UADOPTDBUH0	-	ACR225A0H096	DCR270A0H18	ACR225A0H05
U2KX132KS	800	350	CK09	FIN 28CSTD	UADOPTDBUH0	-	ACR300A0H067	DCR310A0H14	ACR300A0H05
U2KX160KS	1200	400	CK95	PR3 450STD	UADOPTDBUH0	-	ACR360A0H056	DCR400A0H13	ACR360A0H05
U2KX200KS	1600	500	CK10	PR360STD	UADOPTDBUH0	-	ACR460A0H044	DCR540A0H08	ACR460A0H05
U2KX250KS	2000	700	J. 11	PR3750STD	UADOPTDBUH0	-	ACR550A0H039	DCR650A0H07	ACR550A0H05
U2KX315KS	2000	806	CK 2	PR3900STD	UADOPTDBUH0	-	ACR625A0H035	DCR740A0H06	ACR625A0H05

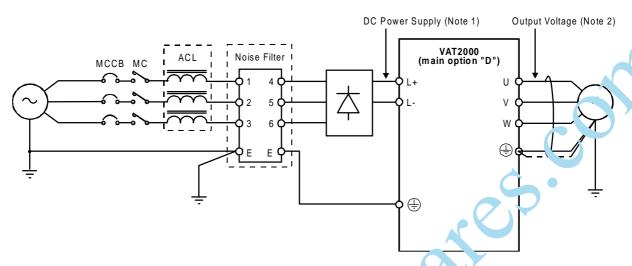
(Note 1) Device selection conditions

- The input current is calculated as follows: I = (kW)/(ηM x ηINV x COSø x Voltage x √3)
- The ηM (motor efficiency) is 0.8 for 11kW or less, 0.85 for 15kW or more.
- The ηINV (inverter efficiency) is 0.95.
- COSø (input power factor) is 0.9.
- The power supply voltage is 220V/440V.
- (No. 2) o comply with UL using the 400V Series, use a Class J fuse.
- Vote 3) Use MCCB with magnetic trip only
- (Note 4) EMC Filters are shown in section 7-5 (Electromagnetic Compliance, EMC)
- (Note 5) These are external braking resistors for optimal performance. Drives with built in DB include built in resistance as well. Check chapter 7-4-1.
 - Braking resistors for drives larger than 45kW are not standard items. Ask your dealer
- (Note 6) The Surge absorber -useful when length of motor cable is more than 30mts- is configured using the output reactor shown in above table plus RC filter, either N11P34018=7 (use up to 4kHz carrier frequency) or N11P34018=6 (use up to 8kHz carrier frequency)

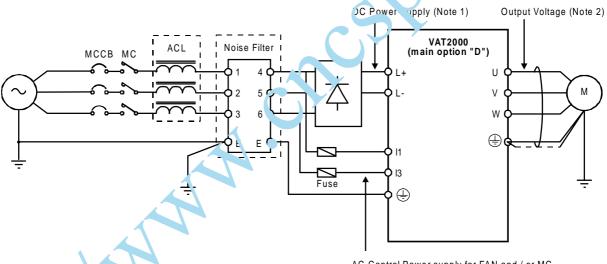
Table 7-2 Main circuit wiring device ratings and stand-alone option types (1) (4)

VARIABLE TORQUE RATINGS

VAT2000 VT	Fuse (2)	MCC (3)	Line	EMC	Dynamic Braking	Braking Resistor	INPUT	DC	Surge Absorber (6)
Ratings	(A)	(A)	МС	Filter	Module	(5)	AC Reactor	Reactor	Out. Reactor
U2KN00K4S	20	5	CL00	U2KF3016MD1	Built in	TLR405P200	ACR6A2H5	-	-
U2KN00K7S	50	10	CL00	U2KF3016MD1	Built in	TLR216P200	ACR9A1H3	-	-
U2KN01K5S	60	15	CL00	U2KF3016MD1	Built in	TLR108P200	ACR12A0H84	-	-
U2KN02K2S	110	20	CL01	U2KF3030MD1	Built in	TLR74P200	ACR18A0H56	-	-
U2KN04K0S	125	30	CL02	U2KF3030MD1	Built in	TLR44P600	ACR27A0H37	-	
U2KN05K5S	225	40	CL04	U2KF3060MD2	Built in	TLR29P600	ACR35A0H27	DCR45A0H55	-
U2KN07K5S	225	75	CL04	U2KF3060MD2	Built in	TLR22P600	ACR55A0H18	DCR60A0H4	
U2KN11K0S	250	75	CL06	U2KF3094MD3	U2KV23DBUL1	TLR15P1000	ACR70A0H14	DCR80A0H3	-
U2KN15K0S	400	100	CL07	U2KF3094MD3	U2KV23DBUL1	TLR11P1200	ACR80A0H14	DCR100A0'124	
U2KN18K5S	500	150	CL09	PR3120STD	U2KV23DBUL2	TLR8,8P1500	ACR97A0H11	DCR120A6 12	-
U2KN22K0S	500	150	CL10	PR3150STD	U2KV23DBUL2	TLR7,4P1800	ACR140A0H072	DCR150A0H17	-
U2KN30K0S	600	200	CK75	PR3150STD	U2KV23DBUL3	TLR5P2500	ACR180A0H056	D(:R18040F4	-
U2KN37K0S	600	200	CK75	PR3180STD	U2KV23DBUL3	TLR4P3000	ACR200A0H051	CR220A JH11	-
U2KX00K4S	10	5	CL00	U2KF3016MD1	Built in	TLR864P200	ACR3A8H1	7	ACR3A0H05
U2KX00K7S	20	5	CL00	U2KF3016MD1	Built in	TLR864P200	ACR4A5H1	-	ACR4A0H05
U2KX01K5S	30	5	CL00	U2KF3016MD1	Built in	TLR432P200	ACR6A3, 1	-	ACR6A0H05
U2KX02K2S	50	15	CL00	U2KF3016MD1	Built in	TLR295P200	FCR: 42H	-	ACR10A0H05
U2KX04K0S	60	20	CL00	U2KF3016MD1	Built in	TLR175P600	4CR 14A 1:14	-	ACR14A0H05
U2KX05K5S	90	30	CL02	U2KF3032MD2	Built in	TLR118P6C1	A R18A1H1	DCR25A2H1	ACR18A0H05
U2KX07K5S	110	40	CL04	U2KF3032MD2	Built in	TLR86F 300	ACR27A0H75	DCR32A1H6	ACR27A0H05
U2KX11K0S	125	40	CL04	U2KF3058MD3	U2KV23DBUH1	TLR5(P1000	R35A0H58	DCR40A1H2	ACR35A0H05
U2KX15K0S	175	50	CL04	U2KF3058MD3	U2KV23DBUH1	T'3P1000	AC⊀38A0H58	DCR50A0H96	ACR38A0H05
U2KX18K5S	225	50	CL06	U2KF3058MD3	U2KV23DBUH2	LR35P 1500	ACR45A0H45	DCR60A0H82	ACR45A0H05
U2KX22K0S	250	75	CL06	U2KF3096MD4	U2KV23DBU 12	TL, 1800	ACR70A0H29	DCR80A0H58	ACR62A0H05
U2KX30K0S	300	100	CL07	U2KF3096MD4	U2KV23DL H3	R22P2500	ACR90A0H22	DCR100A0H49	ACR90A0H05
U2KX37K0S	400	100	CL09	PR3150STD	U2KV232BUh		ACR90A0H22	DCR125A0H40	ACR90A0H05
U2KX45K0S	400	150	CL09	PR3180STD	2 x U2KV2	TLR15P3700	ACR115A0H18	DCR140A0H32	ACR115A0H05
U2KX55K0S	500	200	CK75	PR3280STD	UADOPTDBUH0	-	ACR160A0H14	DCR180A0H25	ACR160A0H05
U2KX75K0S	700	300	CK08	PR3280ST	UADOPTDBUH0	-	ACR185A0H11	DCR210A0H25	ACR185A0H05
U2KX90K0S	800	300	CK85	PR333C RTD	U. DOPTDBUH0	-	ACR225A0H096	DCR270A0H18	ACR300A0H05
U2KX110KS	800	350	CK09	PR3530STD	UADOPTDBUH0	-	ACR300A0H067	DCR310A0H14	ACR300A0H05
U2KX132KS	1200	400	CK09	F 1345 (STD	UADOPTDBUH0	-	ACR360A0H056	DCR400A0H13	
U2KX160KS	1600	500	CK95	PR. 666 3TD	UADOPTDBUH0	-	ACR460A0H056	DCR540A0H08	ACR460A0H05
U2KX200KS	2000	700	CK1c	Ph. '50STD	UADOPTDBUH0	=	ACR550A0H039	DCR650A0H07	ACR550A0H05
U2KX250KS	2000	800	C <11	PR3900STD	UADOPTDBUH0	-	ACR625A0H035	DCR740A0H06	ACR625A0H05
U2KX315KS	2600	900	CK12	PR3900STD	UADOPTDBUH0	=	ACR700A0H035	DCR800A0H06	ACR700A0H05


(Note 1) Device selection conditions

- The input current is calculated as follows: I = (kW)/(ηM x ηINV x COSø x Voltage x √3)
 - The ηM (motor efficiency) is 0.8 for 11kW or less, 0.85 for 15kW or more.
 - he nINV (inverter efficiency) is 0.95.
 - COSø (input power factor) is 0.9.
 - The power supply voltage is 220V/440V.
- (N. 'e 2) To comply with UL using the 400V Series, use a Class J fuse.
- (Note 3) Use MCCB with magnetic trip only
- (1-ote 4) EMC Filters are shown in section 7-5 (Electromagnetic Compliance, EMC)
- (Note 5) These are external braking resistors for optimal performance. Drives with built in DB, include built in resistance as well. Check chapter 7-4-1.
 - Braking resistors for drives larger than 45kW are not standard items. Check chapter 7-4-3.
- (Note 6) The Surge absorber -useful when length of motor cable is more than 30mts- is configured using the output reactor shown in above table plus RC filter, either N11P34018=7 (use up to 4kHz carrier frequency) or N11P34018=6 (use up to 8kHz carrier frequency)


7-2 VAT2000's main option

VAT2000 catalog numbers U2KxxxKx**D**, are for DC supply, allowing configurations in common bus.

(1) U2KX00K4D - U2KX37K0D, U2KN00K4D - U2KN07K5D

(2) U2KX45K0D, U2KN11K0D – U2KN37K0D

AC Control Power supply for FAN and / or MC of VAT2000 (Note 3) $\,$

- (Note 1) DC Fowe: Supply Voltage
 - ''' type 520V-720V DC
 - "N" type 270V-360V DC
- (N :e 2) Cutput Voltage
 - Y" type Max. 480V AC
 - "N" type Max. 230V AC

An output voltage exceeding the DC supply voltage / 1.35, can not be attained.

- (Note 3) AC Control power supply for FAN and/or MC of VAT2000
 - "X" type $380V-460V \pm 10\% 50/60Hz \pm 5\%$, $480V + 5\% 50/60Hz \pm 5\%$,
 - "N" type 200V-230V \pm 10% 50/60Hz \pm 5%

7-3 Built in PCB option

This is a built-in type option mounted on the VAT2000 control PCB.

As shown in table 7-1, there are three type of option PCBs, option I, option II and option III. The VAT2000 allows mounting up to three cards, but only one of each type.

These PCB options can be easily mounted after purchasing the VAT2000 by the end user.

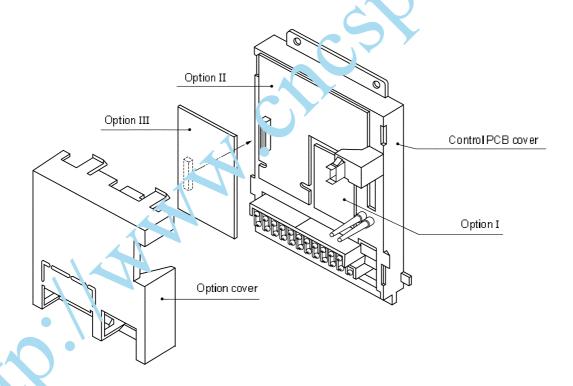
* The PCB option cover is required when the PCB option is mounted.

Refer to each instruction manual for details on the PCB options.

7-3-1 Option classes

(1) Option I

This is a PCB option for speed detection during IM vector control with speed senso and PM drive control. The mounting position is fixed.


* The PM drive control is applicable for the standard PM motor.

(2) Option II

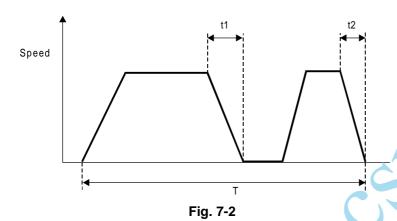
This is the PCB option for an analog interface, etc. The mounting position is itself

(3) Option III

This is the PCB option for the relay interface, etc.

Built-in PCB option mounting drawing

7-4 Dynamic braking (DBR).


The VAT2000 includes a dynamic braking feature in drives up to U2KN07K5S and U2KX07K5S. When this function is used, set C22-3 accordingly.

For larger drives the dynamic braking is achieved by using external modules. In this case set C22-3=0.0

7-4-1 Units U2KN07K5S and smaller, and U2KX07K5S and smaller

These drives include a dynamic braking feature and a DB resistor as standard. The DBR device, allow operation cycle of 10% ED as shown in Fig. 7-2.

When using the dynamic braking option, set parameter B18-1, and C31-0, accordingly.

T >10 nin t. + t2+ ... ≤ 1min.

(1) Unit built-in DBR

The wiring of resistor built into the unit is shown in Fig. 7-3, and ratings are shown in table 7-3 Because of space restrictions, these resistors do not allow 100% of braking torque in some cases.

Table 7-3

Device type U2KN	Resistance capacity (W)	Re ince alue (Ω)	Braking torque (%) (1)	Max. t1 (SEC)	Device type U2KX	Resistance capacity (W)	Resistance value (Ω)	Braking torque (%)	Max. t1 (SEC)
00K4S	120	220	180	30	00K4S	120	430	300	10
00K7S	120	220	100	30	00K7S	120	430	200	10
01K5	120	220	50	30	01K5S	120	430	100	10
02K2?	120	180	40	20	02K2S	120	430	65	10
o KOS	120	110	40	10	04K0S	120	430	40	10
05Kเว	120	91	30	10	05K5S	120	430	25	10
v.".5S	120	91	25	10	07K5S	120	430	20	10

(Note 1) The braking torque is given for constant torque ratings. When using variable torque ratings, the braking torque is the value given for one frame smaller drive.

(2) External DBR

If the braking torque or ED are insufficient with the above built-in resistor, provide an external resistor wired as shown in Fig. 7-3. When using an external DBR, remove the built-in DBR. The resistance value to obtain a 100% braking torque is shown in Table 7-4.

When using the external DBR resistor, is recommended the use of a thermal relay (76D), to prevent burning as shown in Fig. 7-3

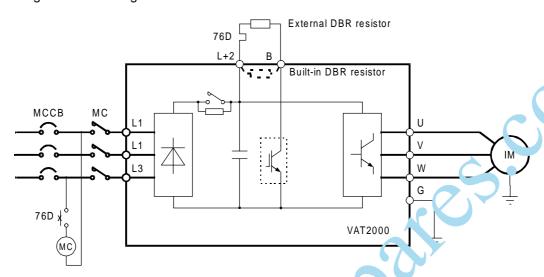


Fig. 7-3 DBR circuit

7-4-2 Units from U2KN11K0S to U2KN37K0S, and from U2KX11K0S to U2KX45K0S.

Connect the DBR unit as shown in Fig. 7-4. In some cases more than one unit can be wired in parallel, check table 7-2 and manual PCST3299E for U2KV23DBU device.

Set in VAT2000 the parameters, C312-2 or 4, C22-3=0, B18-1=100%, B25-1=100%.

Set in module U2KV23DBU the parmeters A0.x and A1.x at least. Check manual of U2KV23DBU.

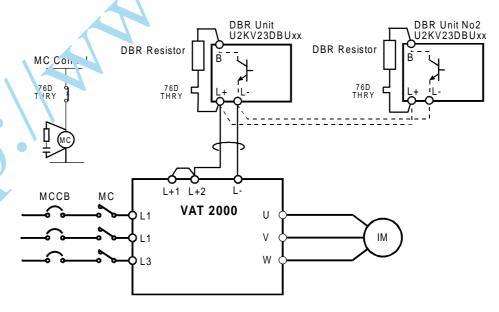
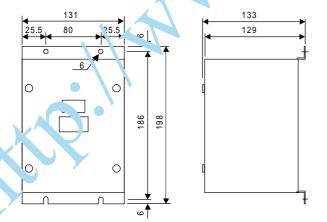
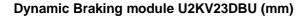
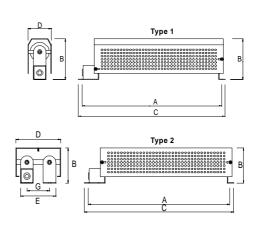


Fig. 7-4 DBR connection

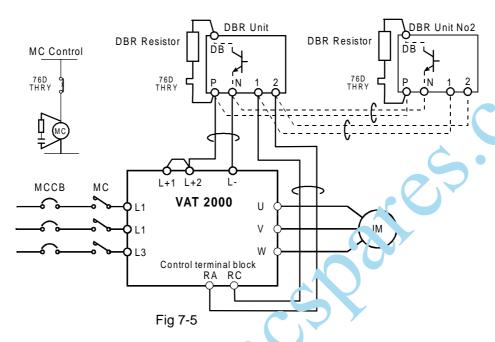

The resistance value to obtain a 100% braking torque is shown in Table 7-4.


Table 7-4


VAT2000	100% Torque	Resistance	Wire			Di	mensio	ns		
type	Resistance (Ω)	(Note1)	(mm²)	Α	В	С	D	Е	G	Туре
U2KN00K4	405	TLR405P200	2.5	215	80	235	40 Ø	-	-	1(*)
U2KN00K7	216	TLR216P200	2.5	215	80	235	40 Ø	-	-	1(*)
U2KN01K5	108	TLR108P200	2.5	215	80	235	40 Ø	-	-	1(*)
U2KN02K2	74	TLR74P200	2.5	215	80	235	40 Ø	-	-	1(*)
U2KN04K0	44	TLR44P600	2.5	430	95	460	57	-	-	1
U2KN05K5	29	TLR29P600	2.5	430	95	460	57	-	-	1
U2KN07K5	22	TLR22P600	2.5	430	95	460	57	-	-	1
U2KN11K0	15	TLR15P1000	2.5	430	105	460	66	-	-	1
U2KN15K0	11	TLR11P1200	4	430	125	460	80	-	-	1
U2KN18K5	9	TLR8,8P1500	4	430	105	460	139	105	65	2
U2KN22K0	7	TLR7,4P1800	6	430	105	460	139	105	65	2
U2KN30K0	5	TLR5P2500	16	430	105	460	207	185	136	_2
U2KN37K0	4	TLR4P3000	16	410	180	430	139	4.5	68	2
U2KX00K4	864	TLR864P200	2.5	215	80	235	40 Ø		-	1(*)
U2KX00K7	864	TLR864P200	2.5	215	80	235	4000		-	1(*)
U2KX01K5	432	TLR432P200	2.5	215	80	235	40 ∅	<u>-</u>	-	1(*)
U2KX02K2	295	TLR295P200	2.5	215	80	235	46 M	-	-	1(*)
U2KX04K0	175	TLR175P600	2.5	430	95		5.	•	-	1
U2KX05K5	118	TLR118P600	2.5	430	95	460	57	1	-	1
U2KX07K5	86	TLR86P600	2.5	430	95	30	57	•	-	1
U2KX11K0	59	TLR59P1000	2.5	430		46ι	66	•	-	1
U2KX15K0	43	TLR43P1000	2.5	430	100	460	66	-	-	1
U2KX18K5	35	TLR35P1500	2.5	4 1	.05	460	139	105	65	2
U2KX22K0	29	TLR29P1800	4	'30_	105	460	139	105	65	2
U2KX30K0	22	TLR22P2500	6	0د'4	105	460	207	185	136	2
U2KX37K0	18	TLR18P3000	16	410	180	430	139	119	68	2
U2KX45K0	15	TLR15P3700	16	410	180	430	139	119	68	2

Note 1 Recommended resistor is rated for a ED of 10%, with maximum braking time of 20 sec. For braking large inertia io. 4s ask your supplier for an appropriate resistor. Note that VAT2000 up to U2KN07K5S and U2KX07K5S, include DB resistor as shown in table 7-3. This should be disconnected when using external resistors

Type 1(*) As type 1, but provide with 210mm output cable (No terminals)



External Braking resistors

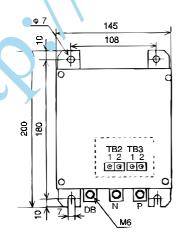
7-4-3 Large units from U2KX55K0S to U2KX315K0.

- 1. When carrying out dynamic braking with the a VAT2000 larger than U2KX55K0S, connect the Braking module UADOPTDBUHO as shown in Fig 7-5. This module should be used at 10% ED or less as shown in Fig 7-2. One or two units in parallel can be used.
- 2. Connect the inverter control terminals RA-RC to Braking unit terminals 1-2. The DB will function when the VAT2000 runs then.

- Set the following parameters on VAT2000 when using the Dynamic Braking module UADOPTDBUHO. C31-0=2 or 4
 - C13-2=0; RA-RC output is assigned to RUN function.
 - B18-1=100%; Regenerative current limit
 - B25-1=100%; Regenerative current limit for auxiliary drive (if used only)
- 4. Obtain the power generation capacity and DBR resistance value with the following expressions.

Power generation capacity
$$[KW]$$

NotorRatedTorque


NotorRatedTorque

 K

Power generation capacity $[KW]$

For VAT2000 400V 5, 193, K=593

5. The minimum resistance value of the resistor that can be connected to the DBR unit is 3,3 Ohms. If lower values are required use two DB units in parallel

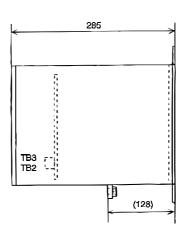
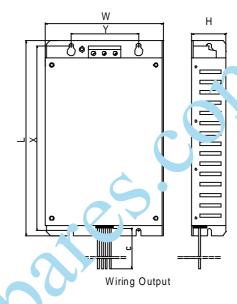
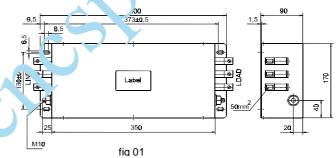


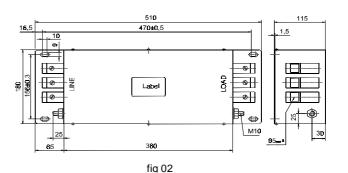
Fig 7-2 UADOPTDBUHO dimensions

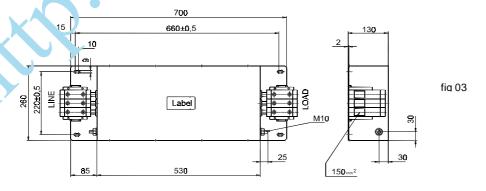

7-5 Electro Magnetic Compliance, EMC

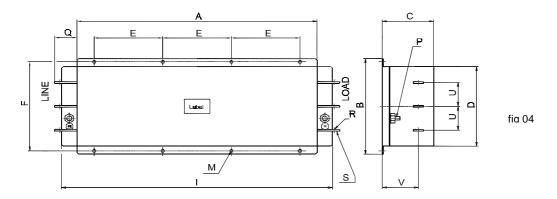
Electromagnetic Compliance with the EN50081 & EN50082 is achieved by using appropriate EMC filters. EMC foot print filters can be mounted on the drive's foot saving space in cabinets, or alternatively along side the drive when the total depth is a problem.

Details of Foot print and Stand alone filters are given below.


(1) Foot-print filters


EMC Filter	Current		Dimensio	ns	
Part No		LxWxH	XxY	M	Input Term.
U2KF3016MD1	16A	288x175x51	273x100	M5	10mm2
U2KF3030MD1	30A	288x175x51	273x100	M5	10mm2
U2KF3032MD2	32A	320x221x51	305x150	M5	10mm2
U2KF3058MD3	58A	427x275x66	402x225	M5	10mm2
U2KF3060MD2	60A	320x221x51	305x150	M5	25mm2
U2KF3094MD3	94A	427x275x66	402x225	M5	35mm2
U2KF3096MD4	96A	575x312x67	549x200	M5	35mm2




(2) Stand Alone EMC filters

EMC Filter	Current	Dim.	Term.
Part No			
PR3110STD	110A	fig 1	50 mm ²
PR3120STD	120A	fig 1	50 mm ²
PR3150STD	150A	fig 2	95 mm ²
PR3180STD	180A	fig 2	95 mm ²
PR3280STD	280A	fig 3	150 mm ²
PR3330STD	330A	fig 4	Bar 25xC
PR3380STD	380A	fig 4	Bar 25x6
PR3450STD	450A	fig 4	Par 25.16
PR3660STD	660A	fig 4	Bar 3c.
PR3750STD	750A	fig △	E ar 40x10
PR3900STD	900A	fin4	∟ r 40x10

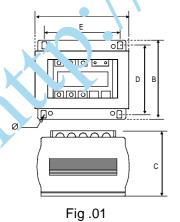
	Α	В	С	D	Е	F	I	М	Р	Q	R	S	U	V
PR3330STD	700	300	150	250	200	280	790	9	M16	65	12,5	25x6	75	105
PR3380STD	700	300	150	250	200	280	790	9	M16	65	12,5	25x6	75	105
PR3450STD	700	300	150	250	200	280	790	9	M16	65	12,5	25x6	75	10'
PR3600STD	700	300	150	250	200	280	790	9	M16	85	12,5	30x5	75	105
PR3750STD	556	430	215	360	150	400	680	13	M20	122	17	40 <10	90	115
PR3900STD	556	430	215	360	150	400	680	13	M20	122	17	⁴0x1∪	£)	115
Tol mm.	±2	±3	±2	±2	± 0,5	± 0,2	±3	-	-	±3	± 0,3		±1	-

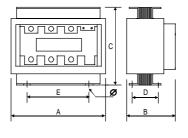
(3) Recommended Installation instructions for Electro Magnetic Co. pliance

An inverter has not intrinsic on its own, but is considered a a component to be installed with other control components. It should be possible to achieve FMC for the machinery controlled by the inverter by following the guidelines below.

- 1. Check the filter and inverter rating labels it ensure that the part numbers are correct.
- 2. Ensure the best possible earthing of transfer.
- 3. Both filter and inverter have to be securely mounted.
- 4. Connect the incoming mains so ply to the filter terminals marked "lines", connect any earth calles to the earth stud provided. Connect the filter terminals marked "LOAL" to the mains supply of the inverter using short lengths of appropriate gauge cable.
- 5. Connect the motor by means of armoured or screened cable. The earth conductor structure because the screen conductor structure and because the screen conductor because the screen conducto

It is important that the lead length from filter to inverter and unscreened length of motor output cable be kept as short as possible and that incoming mains and outgoing cables are kept well separated.




7-6 Reactors

(1) Input Reactors

Input reactor usage is shown on Table 7-1 and 7-2, for both CT and VT ratings. Other details are given below.

	Losses			DIMENS	IONS	(mm)			Weight
Catalolg #	w	Drawing	Α	В	С	D	E	0	(kg)
ACR4A2H5	9	Fig.01	137	146	103	125	102	7	2,9
ACR6A2H5	11	Fig.01	137	146	103	125	102	7	3,2
ACR9A1H3	14	Fig.01	137	146	113	125	102	7	4
ACR12A0H84	19	Fig.01	173	167	118	146	127	7	8
ACR18A0H56	21	Fig.01	173	167	133	146	127	7	10
ACR27A0H37	23	Fig.01	205	200	145	176	174	7	12
ACR35A0H27	25	Fig.01	205	200	155	176	174	7	13
ACR55A0H18	28	Fig.01	205	200	155	176	174	7	_13
ACR70A0H14	32	Fig.02	280	190	210	80	250	9	20
ACR80A0H14	35	Fig.02	280	190	210	80	250	9	20
ACR97A0H11	39	Fig.02	280	190	210	80	250	(20
ACR140A0H072	40	Fig.03	280	220	210	90	250	9	22
ACR180A0H056	42	Fig.03	280	230	210	100	250	9	27
ACR200A0H051	47	Fig.03	280	245	210	115	250		29
ACR3A8H1	8	Fig.01	137	146	103	125	.)2	7	2,8
ACR4A5H1	9	Fig.01	137	146	103	125	102	7	2,9
ACR6A3H4	11	Fig.01	137	146	103	12!	1 2	7	3,2
ACR10A2H	14	Fig.01	137	146	113	125	1//2	7	4
ACR14A1H4	19	Fig.01	173	167	118	1	2.7	7	8
ACR18A1H1	21	Fig.01	173	167	13%	146	127	7	10
ACR27A0H75	23	Fig.01	205	200	14 5	176	174	7	12
ACR35A0H58	25	Fig.01	205	200	155	176	174	7	13
ACR38A0H58	32	Fig.01	205	200	1,	176	174	7	14
ACR45A0H45	35	Fig.01	205	20	170	176	174	7	14
ACR70A0H29	40	Fig.02	280	200	210	90	250	9	22
ACR90A0H22	42	Fig.02	280	5.0	210	100	250	9	27
ACR115A0H18	47	Fig.02	250	225	210	100	250	9	29
ACR160A0H14	51	Fig.03	340	≥30	265	106	310	9	38
ACR185A0H11	53	Fig.03	340	250	265	126	310	9	43
ACR225A0H096	58	Fig.C3	- 0	250	265	126	310	9	45
ACR300A0H067	75	F; 1.03	410	320	315	136	380	9	81
ACR360A0H056	78	Fig u.	410	320	315	136	380	9	86
ACR460A0H056	107	, 7,13	490	340	365	142	460	9	97
ACR550A0H039	110	Fig.03	490	340	365	142	460	9	98
ACR625A0H035	120	Fig.03	490	340	365	142	460	9	101
ACR700A0H035	.30	Fig.03	490	340	365	142	460	9	105

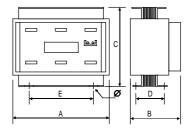
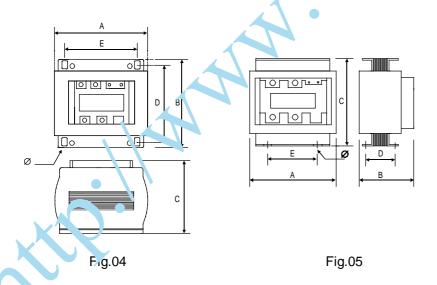
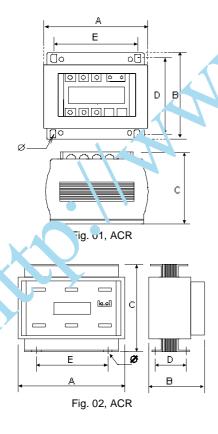
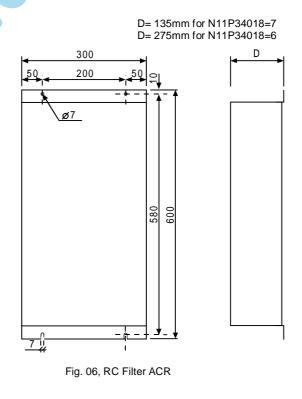



Fig .02

(2) DCR Reactors
DC Bus reactor usage is shown on Table 7-1 and 7-2, for both CT and VT ratings. Other details are given below.

	Losses			DIMENS	ONS	(mm)			Weight
Catalolg #	w	Drawing	Α	В	С	D	E	0	(kg)
DCR32A0H78	13	Fig.04	150	200	145	176	102	7	7
DCR45A0H55	13	Fig.04	150	200	145	176	102	7	7
DCR60A0H4	14	Fig.04	150	200	155	176	102	7	8
DCR80A0H3	17	Fig.04	150	200	170	176	102	7	9
DCR100A0H24	17	Fig.04	150	200	170	176	102	7	9
DCR120A0H2	17	Fig.05	190	200	215	90	160	9	15
DCR150A0H17	21	Fig.05	190	210	215	100	160	9	17
DCR180A0H14	26	Fig.05	240	200	265	96	210	9	21
DCR220A0H11	27	Fig.05	240	200	265	96	210	9	21
DCR18A2H9	13	Fig.04	125	167	118	146	89	7	5
DCR25A2H1	14	Fig.04	125	167	118	146	89	7	5
DCR32A1H6	15	Fig.04	125	167	133	146	89	7	6
DCR40A1H2	17	Fig.04	125	167	133	146	89	7	б
DCR50A0H96	16	Fig.04	150	200	145	176	102		
DCR60A0H82	17	Fig.04	150	200	155	176	102	7	8
DCR80A0H58	21	Fig.04	150	200	170	176	102	7	9
DCR100A0H49	23	Fig.04	150	200	170	176	152		9
DCR125A0H40	27	Fig.05	190	200	215	90	1.30	9	15
DCR140A0H32	29	Fig.05	190	200	215	90	160	9	15
DCR180A0H25	33	Fig.05	250	230	300	10/	2 0	9	25
DCR210A0H25	35	Fig.05	250	340	300	126	210	9	27
DCR270A0H18	37	Fig.05	250	250	300		10	9	28
DCR310A0H14	39	Fig.05	250	250	300	136	210	9	31
DCR400A0H13	42	Fig.05	300	270	35 \	136	260	11	55
DCR540A0H08	49	Fig.05	300	300	`50	136	260	11	56
DCR650A0H07	50	Fig.05	300	300	35	136	260	11	57
DCR740A0H06	51	Fig.05	300	50	350	136	260	11	58
DCR800A0H06	52	Fig.05	300	300	350	136	260	11	60




(3) Surge absorbers

Surge absorber usage is shown on Table 7-1 and 7-2, for both CT and VT ratings. Other details are given below. Surge absorber is composed by two items, ACR output reactor and RC filters

	Losses			DIMEN	SIONS	(mm)			Weight
Catalolg # ACR	w	Drawing	Α	В	С	D	E	0	(kg)
ACR3A0H05	9	Fig.01	137	146	103	125	102	7	2,9
ACR4A0H05	9	Fig.01	137	146	103	125	102	7	2,9
ACR6A0H05	9	Fig.01	137	146	103	125	102	7	2,9
ACR10A0H05	9	Fig.01	137	146	103	125	102	7	2,9
ACR14A0H05	10	Fig.01	137	146	103	125	102	7	2,9
ACR18A0H05	10	Fig.01	137	146	103	125	102	7	2,9
ACR27A0H05	11	Fig.01	137	146	103	125	102	7	2,9
ACR35A0H05	11	Fig.01	137	146	103	125	102	7	2,9
ACR38A0H05	11	Fig.01	137	146	103	125	102	7	2,9
ACR45A0H05	11	Fig.01	137	146	103	125	102	7	2,9
ACR62A0H05	14	Fig.01	137	146	113	125	102	7	4
ACR90A0H05	21	Fig.01	173	167	133	146	127	7	10
ACR115A0H05	32	Fig.01	205	200	170	176	174	7	14
ACR160A0H05	35	Fig.03	280	210	210	80	250	9	20
ACR185A0H05	39	Fig.03	280	210	210	80	250	9	_J
ACR225A0H05	42	Fig.03	280	230	210	100	250	9	7
ACR300A0H05	53	Fig.03	340	250	265	126	310	9	45
ACR360A0H05	78	Fig.03	410	320	315	136	380	5	7/3
ACR460A0H05	94	Fig.03	490	340	365	142	460	7	97
ACR550A0H05	110	Fig.03	490	340	365	142	4.	9	103
ACR625A0H05	120	Fig.03	490	340	365	142	460	5	104
ACR700A0H05	130	Fig.03	490	340	365	142	.00		106

Catalolg # RC	Losses W	Drawing	VAT2000 sage	Weight (kg)
N11P34018=7	297	Fig. 06	Maximum Carrie, 'reque icy 4kHz	
N11P34018=6	1470		Maximum Carrier fre juency 8kHz	

Chapter 8 Maintenance and Inspection

DANGER

- Always wait at least 20 minutes after turning the input power OFF before starting inspections.
 Wait at least 20 minutes after turning the input power OFF before starting work. Make sure that the displays on the operation panel have gone out before removing the front cover.
 Remove the front cover, and confirm that the "CHARGE" LED on the drive PCB or at the side of the control PCB has gone out. Also check that the voltage between terminals L+1 or L+2 and L- is 15V or less before starting the inspections.
 - Failure to observe this could lead to electric shocks.
- Maintenance, inspections and part replacement must be done by a designated person.
 (Remove all metal accessories such as watches, bracelets, etc., before starting the work.)
 (Always use an insulation measure tool.)
 - Failure to observe this could lead to electric shocks and injuries.
- Always turn the power OFF before inspecting the motor or machine. A potential is app!!ed on the motor terminal even when the motor is stopped.
 - Failure to do so could lead to electric shocks and injuries.
- Do not use parts other than those designated for the replacement parts.
 Contact your inverter dealer for replacement parts.
 Failure to observe this could lead to fires.

CAUTION

Clean the inverter with a vacuum cleaner. Do not use water convents. Failure to observe this could lead to fires or damage.

8-1 Inspection items

The inspections must be carried out periodically according to the working environment and frequency of use. If there are any abnormalities, the cause must be inspected immediately and countermeasures taken.

(1) Daily inspections

Table 8-1

Inspection iter	Inspection details and work
Temperature/hu 'dity	Confirm that the ambient temperature is –10 to 50°C, and that the humidity is 95% or less with no dew condensation.
Oil mist and dus	Confirm that there is no oil mist or dust in the VAT2000.
Abnormal noise and vib' n	Confirm that there is no abnormal noise or vibration from the installation site or VAT2000.
Inp 't po ver source	Confirm that the input voltage and frequency are within the specifications range.
Cooling ran	Confirm that the cooling fan rotates normally and that no lint, etc. is stuck on it.
ındicator	Confirm that all lamps on the operation panel light properly.

(2) Periodic inspections

Table 8-2

Inspection item	Inspection details and work	
VAT2000 appearance	Check the state of dirt and dust on the vent or heatsink, and clean if necessary.	
VAT2000 interior	Check the state of dirt and dust on the PCB and inside the equipment, and clean if necessary.	
Terminal block	Tighten the terminal block screws if loose.	
Cooling fan	Replace the fan every three years.	
Electrolytic capacitor	Confirm that there is no liquid leaking or sheath discoloration.	
Insulation resistance inspection	Do not perform a megger test on the VAT2000. When doing a megger test in the external circuit, disconnect all wires connected to the VAT2000	
Encoder	Confirm that there is no looseness or play in the bearings or corolings. The bearings are durable parts. This is approx. 10,000 hours at bearings and approx. 30,000 hours at 3000rpm. They must be replaced periodically.	

(3) Inspection of spare VAT2000

The inspection shown in Table 8-2 must also be performed for some VAT2000 that are left connected but are not used in normal operation. The operation of the VAT2000 must be checked every six months by turning the power on.

8-2 Measuring devices

As the voltage and current on the input and output side include high harmonics, the measured value will differ according to the measuring device. When the sum with a device for commercial frequencies, measure with the following circuits and noted measuring devices.

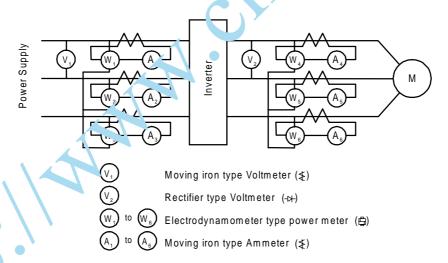


Fig. 8-1 Measurement circuit example

8-3 Protective functions

The VAT2000 has the protective functions shown in Table 8-3.

Table 8-3 Protective function

Name	Function
Overcurrent trip (OC-1 to 9)	The output is cut off and the inverter stops if the instantaneous value of the output current exceeds the preset value.
Overvoltage trip (OV-1 to 9)	The output is cut off and the inverter stops if the instantaneous value of the CC voltage in the main circuit exceeds the preset value.
Undervoltage trip (UV-1 to 9)	The output is cut off and the inverter stops if the DC voltage drops to approx. 65% or less due to a power failure or voltage drop during operation.
Overcurrent limit	If an overload occurs, the output frequency is automatically adjusted so that the output current is less than the overcurrent limit (150% as a standard). with B18-0.
Overvoltage limit	If the output frequency is reduced suddenly, the DC voltage will rise in the main circuit due to the regenerative power. The output frequency will be automatically adjusted to prevent the DC voltage in the main circuit frem acceeding the preset value.
Overload trip (OL-1)	The output will be cut off and the inverter will (top), the overload characteristics set with C22-0, 1 and 2 are exceeded. The setting (150% for 1 min. as a standard) can be changed according to the characteristics of the motor.
Overheat (UOH)	A thermistor is installed to detect ten recia ure ises of the heatsink.
Self-diagnosis (IO, dER, CPU)	The built-in CPU, peripheral pircuits and data are tested and monitored for abnormalities.
Grounding trip (Grd1 to 9)	The output will be cut on and the inverter will stop if a ground fault is detected.
Power module fault (PM-1 to 9)	The operation of the main circuit power module protection function is detected, and the inverter will sup if a fault is detected.

8-4 Troubleshooting with fault display

The countermeasures for when the inverter stops with a fault code display are shown in Table 8-4.

Table 8-4 Troubleshooting (1)

Dioplay symbol	Name	Causes and countermeasures
Display symbol		
5.5. 5.5.	Emergency stop	 The sequence input EMS has been activated. Check the signal wiring. This fault occurs when C00-4=2.
		2. This fault occurs when coo-4–2.
EMS.		
PM-1~PM-9	Power module	 Indicates that the short circuit protection circuit activated. The sub-codes and causes and countermeasures are the same as for OC-1~9.
1 101 1-1 101 5	_	
OC-1	Overcurrent during stop	1. The power module in the main circuit ay be broken.
OC-2	Overcurrent during constant speed operation	A sudden change in the load or short circuit may have occurred. Reduce the load (luctuation).
	Overcurrent	1. Increase the acceleration time setting (A01-0).
OC-3	during acceleration	 Reduce the torque boost voltage (A02-2). Ar excess GD², short circuit or rapid fluctuation of the load may have occurred.
OC-4	Overcurrent during decelers on	Increase the deceleration time setting (A01-1). A short circuit or rapid fluctuation of the load may have occurred.
	Ove. irrent	1. Reduce the brake voltage setting (A03-0).
OC-5	u. 'ng braking	2. A short circuit in the load may have occurred.
OC-6	Overcurrent during ACR	A short circuit in the load may have occurred.
○, 日 ,日,日, OC-7	Overcurrent during pre-excitation	

Display symbol	Name	Causes and countermeasures
OC-9	Overcurrent during automatic tuning	 Increase the acceleration time setting (A01-0). Increase the deceleration time setting (A01-1). A short circuit in the load may have occurred.
OV-1	Overvoltage during stop	The power supply voltage may have risen. Reduce the voltage to within the specified range.
OV-2	Overvoltage during constant speed operation	 The power supply voltage may have risen. Reduce the voltage to within the specified range. The speed may be fluctuating.
OV-3	Overvoltage during acceleration	
OV-4	Overvoltage during deceleration	 The load GD² may be tools ge. Set the decereration line (A01-1) according to the load GD². The power supply /oltage may have risen. Reduce the coltage to within the specified range.
OV-5	Overvoltage during braking	The nov er supply voltage may have risen. Reduce the voltage to within the specified range.
OV-6	Overvoltage during ACT	
	Overvoltage during pre-excitation	
OV-9	Overvoltage during automatic tuning	

Display symbol	Name	Causes and countermeasures
UV-1~UV-9	Undervoltage	A drop in voltage, phase dropout or power supply failure may have occurred. Check the power supply system and correct if necessary.
UOH.	Overheat	 A trouble may have occurred in the cooling fan. Replace if necessary. The ambient temperature may have risen. Lower the ambient temperature. (50°C or less) The fan or heatsink may be clogged. Clean it The carrier frequency may be set too high. Check Appendix Table 1 (note5)
∃ , E , E , E , O	Automatic tuning abnormal completion n: Step No.	1. n = 1 The motor may not be connected correctly. Check the connection. The B00 and B01 parameters and any not be set correctly. Check the parameter settings.
		2. n = 2 The B00 and B01 pare mete 3 may not be set correctly. Check the parametricatings.
		3. n = 3 The load and muchine may not be separated. Separate the acceleration time (A01-0). Increase the acceleration time (A01-1). Increase the deceleration time (A01-1). Increase the torque stabilising rain (C18-2).
	.4	4. n = 4 The load and machine may not be separated. Separate the load and machine. If the motor vibrates, increase the torque stabilising gain (B18-2).
		 5. n = 5 If the motor does not stop, Increase the acceleration/deceleration time (A01-0, A01-1). If the motor is stopped, the B00 and B01 parameters may not be set correctly. Check the parameter settings. 6. n = 6 The B00 and B01 parameters may not be set
1/4		correctly. Check the parameter settings
(E.E.E.H.) OL-	Overload	 The motor may be overloaded. Reduce the load or increase the motor and inverter capacity. If this occurs at a low speed, try lowering the boost (A02-2) of brake voltage (A03-0).
GRD.1~GRD.9	Grounding	A ground fault may have occurred in the output line or motor Restore the grounded point.

Display symbol	Name	Causes and countermeasures
(E.E.E.E.) IO-1	I/O error (gate turn-off circuit error)	The VAT2000 may be malfunctioning due to external noise, etc. Look for the noise source and remove the cause. The control circuit may be faulty.
IO-2	I/O error (A/D converter error)	
[□.□.∃.□.∃.] IO-3	I/O error (current detection error)	The current detector connectors may be connected improperly. Properly connect these. The current detection may be faulty.
IO-4	I/O error (retry time-out)	Retry has failed. There are no contermeasures for this code, so reset the VAT2000.
.E.E. ■ IO-E	I/O error (thermistor error)	1. Securely connect the thermistor connector.
IO-F	I/O error (speed detection error)	This in .cates that there is an error in the speed detection operation results. Check the speed detection signal wiring, connection and the speed detector.
CPU-1~CPU-8	CPU c "or	 The unit may be malfunctioning due to external noise, etc. Look for the noise source and remove the cause. The control circuit may be faulty. For all sub-codes other than 8, turn the power off and on once.
E. C.	EEPROM data error	The parameter setting value is incorrect. Correct the parameter setting value with the following procedure. (1) Select D20-2 with the monitor mode, and press the set key. The parameter for which an error occurred will display. (2) Set the correct parameter in this state. (3) Display the parameters in order with the knob.

8-5 Troubleshooting with no fault display

The causes and countermeasures for errors with no fault display are shown in Table 8-5.

Table 8-5 Troubleshooting

Phenomenon	Causes and countermeasures
Motor does not run	The input/output wiring may be improper, or phase or power failure may have occurred. Inspect and correct the wiring.
	2. The motor may be locked or the load excessively heavy. Reduce the load.
	3. The reverse run interlock function (C09-3) may be set or the other parameters may be incorrect. Check the parameters.
	 The voltage may not be output to the VAT2000 output terminal. Measure the output voltage, and confirm that the time, hases are balanced.
	5. The local/remote setting may be incorrect. Cet according to the required mode.
	6. The encoder signal may not be input co, actly Check it
Motor runs in opposite direction	 The output terminals U, V, and W coquence may be incorrect. Interchange the phase sequence.
	2. The sequence input wires for forward/reverse run may not be connected to the specified terminals.
	Connect the wires as follows:
	Forward run: Short ircuitto, minals RUN - RY0
	Reverse run: She t-circ it terminals PSI1 - RY0
	(vVher input terminal function setting is
	C02:0=1 (default value))
Motor runs but the speed does not vary	 The load may be too heavy. Reuline the load.
	frequency setting signal level may be too low. Check the signal level and circuit.
Motor acceleration/ deceleration is not smooth	increase the acceleration/deceleration time.
Motor speed varies curing constant speed operation	The load may be fluctuating excessively or the load is too heavy. Reduce the load or fluctuation.
	The inverter-motor ratings may not match the load.Select an inverter-motor set that matches the load.
Motor speed is too high or low	The number of poles or voltage may be incorrect. Check the motor specifications.
XX	 The maximum frequency (speed) or base frequency [B00-4, 5 (B01-4, 5)] may be incorrect.
	The motor terminal voltage may be low.Use a thicker output cable.

Appendix 1 Type Description System

■Standard specifications

■■00V Series up to U2KN037K0

		Item						Spe	ecificati	ions					
		System						200V S	Series (NxxKx)					
Ty	уре ((VAT2000-U2KN_)	00K4	00K7	01P5	02P2	04K0	05K5	07K5	11K0	15K0	18K5	22K0	30K0	37K0
		Rated capacity [kVA] (Note 1)	1.0	1.7	2.7	3.8	5.5	8.3	11.4	15.9	21.1	26.3	31.8	41.0	50
	e 8)	Max. continuous rated current [A] (Note 2)	3.0	5.0	8.0	11	16	24	33	46	61	76	92	110	144
	Constant torque (Note	Max. applicable motor [kW] (Note 3)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
	t tor	Max. Loses (W)	49	62	84	117	153	215	301	420	506	7 18	757	1192	1491
	nstan	Working ambient temperature		−10 to 50°C											
ng		Carrier frequency (Note 5)		Standard 10kHz, variable between 1 and 15kHz									Star 4k vari betw and	ndard Hz, able een 1 15kHz	
Inverter rating		Overload current rating						150)% for 1	min.) <u>/</u>				
Inver		Rated capacity [kVA] (Note 1)	1.2	2.1	3.0	5.1	7.6	10.0	14.	19.3	24.2	29.7	37.4	45.0	55.0
		Max. continuous rated current [A] (Note 2)	5.0	8.0	11	16	22	33	42	o1	76	86	108	134	161
	Variable torque	Max. applicable motor [kW] (Note 3)	0.75	1.5	2.2	3.7	5.:	7.5	11	15	18.5	22	30	37	45
	iabl	Max. Loses (W)	62	84	117	153	215	301	420	506	708	757	1032	1341	1657
	Var	Working ambient temperature			10 to	40°C (I							o 50°C		
		Carrier frequency (Note 5)				Sta	ndard 4l	kHz, vai	riable be	etween	1 and 1	5kHz			
		Overload current rating				_		120)% for 1	min.					
	wer	Rated input AC voltage: rated		-230V ±					200~	220V ±	10%/50	Hz±5%			
Sup	oply	input frequer cv	50/	/60Hz ±	5%				200~	230V ±	10%/601	Hz±5%			
Out (Nc	tput ote	Rated or nut voltage					2	00~230	V (Max.) (Note	7)				
9)	C ttput requency						0	.1~440	Ηz					
Cor	nst-	Structure	Wall-mounted												
ruc	tion	Enclusure	IP20 IP								P00				
		Approx. weight (kg)	3.5 6 13 26 5								55	60			
	K	Cooling method	Self-c	ooling					Forc	ed air c	ooling				
		Paint color						М	unsell N	4.0					
Wo	orkino	g environment	Indoors, Relative humidity: 95%RH or below (no dew condensation), Altitude: 1000m or less, Vibration: 3.0m/s² or less Freedom from corrosive or explosive gases, steam, dust, oil mist or cotton lint.												

■■00V Series VAT2000 up to U2KX45K0

	ltem	Specifications													
/pe (-	00K4	00K7	01P5	02P2	04K0	05K5	07K5	11K0	15K0	18K5	22K0	30K0	37K0	45K0
	Rated capacity [kVA] (Note 1)	1.0	1.7	2.5	3.8	5.9	9.0	11.7	15.9	21.4	25.6	30.4	41.5	50.0	60.0
e 8)	Max. continuous rated current [A] (Note 2)	1.5	2.5	3.6	5.5	8.6	13	17	23	31	37	44	60	72	87
dne (Not	Max. applicable motor [kW] (Note 3)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
t tor	Max. Loses (W)	63	83	111	129	175	275	345	369	481	550	675	876	45	1 75
onstan	Working ambient temperature														
Ö	Carrier frequency (Note 5)			Sta	andard	10kHz,	variab	le betw	een 1 a	and 15k	Hz	C		varia betwee	rd 4kHz able n 1 and kHz
	Overload current rating							150% fo	or 1min		2				
	Rated capacity [kVA] (Note 1)	1.7	2.5	3.8	5.9	9.0	11.7	15.9	21.4	25 1	30	41.5	50.5	55.0	75.0
	Max. continuous rated current [A] (Note 2)	2.5	3.6	5.5	8.6	13	17	23	31	3,	44	60	73	84	108
le torque	Max. applicable motor [kW] (Note 3)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
riab	Max. Loses (W)	83	111	129	175	275	345	369	481	550	675	876	1080	1104	1437
۸	Working ambient temperature					<u> </u>									
	Carrier frequency (Note 5)					tanu rd	4ĸHz,	variable	e betwe	en 1 a	nd 15kl	Hz			
	Overload current rating			1				120% f	or 1min						
wer	Rated input AC		_,^			3	80~460	V ± 10	%, 50/6	0Hz±5	%				
рріу	input frequency (Note 6)	^		7		4	80V – 1	0%, +5	5% 50/6	60Hz <u>+</u> 5°	%				
te	Rated output voltage		4				380~4	N) V084	1ax.) (N	ote 7)					
)	Output frequency	0.1~440Hz													
nst-	Structure														
uon	Enclusure					IP									
	(kg)									50	50				
	Cooling method	Self-c	ooling					F	orced a	ir coolir	ng				
	Paint color														
orkin	environment	Vibration: 3.0m/s ² or less													
	Nariable torque Constant torque (Note 8)	[kVA] (Note 1) Max. continuous rated current [A] (Note 2) Max. applicable motor [kW] (Note 3) Max. Loses (W) Working ambient temperature Carrier frequency (Note 5) Overload current rating Rated capacity [kVA] (Note 1) Max. continuous rated current [A] (Note 2) Max. applicable motor [kW] (Note 3) Max. Loses (W) Working ambient temperature Carrier frequency (Note 5) Overload current rating Wer (Note 5) Overload current requency (Note 5) Overload current rating Rated input AC voltage: rated input frequency (Note 6) Rated output voltage Output frequency Output frequency Structure Enclosure Approx weight (kg) Coo.ing method	System (pe (VAT2000-U2KX_) 00K4 Rated capacity [kVA] (Note 1) Max. continuous rated current [A] (Note 2) Max. applicable motor [kW] (Note 3) Max. Loses (W) 63 Working ambient temperature Carrier frequency (Note 5) Overload current rating Rated capacity [kVA] (Note 1) Max. continuous rated current [A] (Note 2) Max. applicable motor [kW] (Note 3) Max. continuous rated current [A] (Note 2) Max. applicable motor [kW] (Note 3) Max. Loses (W) 83 Working ambient temperature Carrier frequency (Note 5) Overload current rating Wer (Note 5) Overload current rating Rated input AC voltage: rated input frequency (Note 6) Rated output voltage Output frequency Output frequency Coo. ing method Self-cooling method Paint color	System (pe (VAT2000-U2KX_) 00K4 00K7 Rated capacity [kVA] (Note 1) 1.0 1.7 Max. continuous rated current [A] (Note 2)	System Pre (VAT2000-U2KX_) 00K4 00K7 01P5 Rated capacity	System Pre (VAT2000-U2KX_) O0K4 O0K7 O1P5 O2P2	System Pre (VAT2000-U2KX_) O0K4 O0K7 O1P5 O2P2 O4K0	System 100 1	System	System	System	System Comparison Compari	System	System	System

■■00V Series VAT2000 from U2KX55K0S to U2KX315KS

		Item						;	Specifi	cations	3					
		System						400	V Serie	es (Xxx	(Kx)					
Ty	/pe ((VAT2000-U2KX_)	55K0	75K0	90K0	110K	132K	160K	200K	250K	315K					
		Rated capacity [kVA] (Note 1)	75	100	120	150	170	220	300	360	400					
	te 8)	Max. continuous rated current [A] (Note 2)	108	145	173	214	245	321	428	519	590					
	Constant torque (Note	Max. applicable motor [kW] (Note 3)	55	75	90	110	132	160	200	250	315					
	nt to	Max. Loses (W)	1558	2020	2509	3343	3906	4915	6520	7848	9026					
	onsta	Working ambient temperature								50°C						
g)	Carrier frequency (Note 5)				Monoso	ound st				e betwee	n 1 and	d 8kHz			
r ratin		Overload current rating		ı	•	•	ı	•	150% f	or 1min		2)	1	
Inverter rating		Rated capacity [kVA] (Note 1)	100	120	140	170	200	250	330	400	46,					
	40	Max. continuous rated current [A] (Note 2)	147	179	208	242	293	365	479	58	31					
	Variable torque	Max. applicable motor [kW] (Note 3)	75	90	110	132	160	200	250	315	370					
	riab	Max. Loses (W)	2091	2473	2998	3758	4637	5566	7203	8745	10061					
	۸	Working ambient temperature								50°C						
		Carrier frequency (Note 5)				Monos	่วน. 1 st	ar Jard	4kHz,	variable	e betwee	n 1 and	d 8kHz			
		Overload current rating			4				112% f	or 1min						
Pov	wer oply	Rated input AC voltage: rated input frequency (Note 6)			H	•	3	80~460	V ± 10 ⁶	%, 50/6	60Hz±5%)				
(No		Rated output voltage		1				380~4	60V (N	1ax.) (N	lote 7)					
9)	Output frequency		l .					0.1~4	40Hz						
	nst-	Structure	Wall-mounted													
ruc	tion	Encipsu.							IP	00						
		/ppro.r. weight (k,1)	55	60	65	70	90	100	210	3	600					
		Cocling method						F	orced a	ir coolii	ng					
		Paint color								5Y7/1.						
۱۷۵	orkı	n environment	Indoors, Relative humidity: 95%RH or below (no dew condensation), Altitude: 1000m or less, Vibration: 4.9m/s² or less								ss,					
			Freedom from corrosive or explosive gases, steam, dust, oil mist or cotton lint.													

- Note 1) The output voltage indicates the output capacity [kVA] at 200V for the 200V series, and 400V for the 400V series.
- Note 2) Indicates the total effective value including the higher harmonics.
- **Note 3)** Indicates the case for the standard 4-pole squirrel cage motor.
- Note 4) When 40°C is exceeded, derate the output current by 2% for each 1°C. (Refer to Fig. 1-1.)

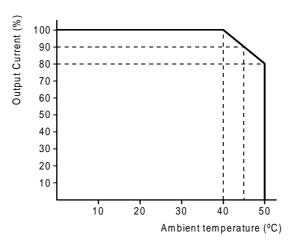


Fig. 1-1 Derating according to ambient temperatu

Note 5) Drives up to U2KN22K0S, and U2KX30K0S

In Constant Torque, drives allow carrier frequency up to 10kHz. Derate 7% current per kHz above that frequency.

In Variable Torque, normal carrier frequency is 4kHz. Above 4kHz, derate current in ratio by (Variable torque rating-Constant Torque rating)/3 per 1kHz, above 4kHz. Check fig. 1-2.

Drives from U2KN22K0S to U2KN37K0S r from U2KX30K0S to U2KX45K0S

Normal carrier frequency is 4kHz in both C₁ or VT rating. VAT2000 should be derated in a 7% current per kHz above 4kHz as shown in fig 1-3

Drives U2KX55K0S or larger

Normal carrier frequency is 4kHz in both CT or VT rating. VAT2000 should be derated in a 5% current per kHz above 4km. as shown in fig 1-4

If the heatsink temperature 70°C is exceeded and the output current exceeds 90%, the carrier frequency will a contact change to 4kHz.

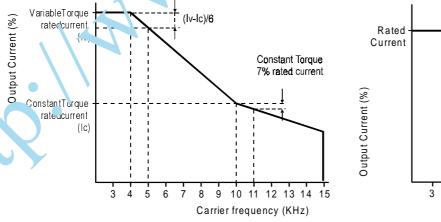


Fig. 1-2 Derating according to carrier frequency for drives up to N22K0 and up to X30K0

3 4 5 6 7 8 9 10 Carrier frequency (KHz)

7% of rated current

Fig. 1-3 Derating according to carrier frequency for drives larger than N22K0 or from X30K0 to X45K0

Note) When changing the carrier frequency, take care to the motor's temperature rise

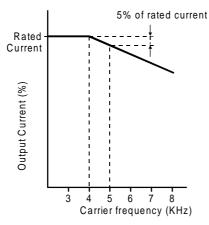
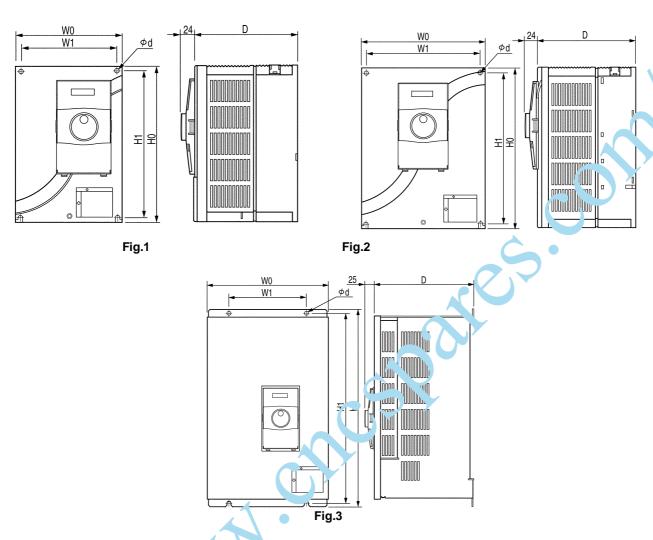


Fig. 1-4 Derating according to carrier frequency for drives larger than U2KX45K0S

Note) When changing the carrier frequency, take care to the motor's temperature rise

- **Note 6)** This inverter is subject to the EC Low Voltage Directives. The rate a input voltage will be 380 to 415V to comply to the EC Low Voltage Directives.
- **Note 7)** An output voltage exceeding the input voltage cannot be a tained.
- Note 8) When using the speed sensor-less vector control, up ve for control with speed sensor, or the PM motor control, select the applicable motor from the max. continuous rated current [A] of the constant torque.

■ Control specifications table


		V/f control (constant torque)	V/f control (variable torque)	Speed sensor-less vector control	Vector control with speed sensor (Note 1)	PM motor control (Note 2)			
	Control method		All digita Sine way	l control ve approximation	n PWM				
Frequency control	Transfer frequency		sound mode : ound mode :	Frequency mod	ncy 2.1 to 5KHz	ation)			
/Suent	Output frequency resolution			0.01Hz					
Frec	Frequency setting resolution			z (digital) 6 (analog) ect to maximum frequency					
	Frequency accuracy			(digital) at 25±10 analog) at 25±10		•			
	Voltage/frequency characteristics	Select randomly f torque, constant of reduction torque of range.	output and	Select randomloutput 150 to 7	y from c ynstan' tu 200m,i (120' Iz)	rque and constant range.			
	Torque boost	Manual/autom	natic selective		_				
, s	Max. torque boost	Max. torque for all output when used tuning.		5	_				
ification	Automatic tuning	Automat	ic measurement of ic measurement c ement time app. or	war bus param		_			
bec	Starting frequency	Set between 0	.1 and 00.0i 7		_				
Control specifications	Starting torque	200% or more (Time to reach us standard motor of 3 seconds)			_				
	Acceleration/	0.01 to 60 000s ec							
	deceleration time	Acceleration, and			ed x 1, program cu	ushion × 8			
	Acceleration/ deceleration mode	N	Linea	inear/S-character selective					
	Operation method		3 modes selective						
			Forward run/reRun stop/forw		run				
		Forward run pulse/reverse run pulse/stop							

(Note 1) The IM speed detection option PCB is required.
(Note 2) This is for the standard PM motor. The PM speed detection option PCB is required.

	_		V/f contr (constar torque)	nt (variable	Speed sensor- less vector control	Vector control with speed sensor	PM motor control				
		Stop method		n stop in respect to run,	emergency stop a	ind inching, coast	to stop selective				
		DC braking	B B	raking start frequency, raking voltage, random raking time, randomly s	randomly set betw ly set between 0.1	reen 0.1 and 60.0h and 20.0%					
	cati	Output frequency		0 to 440Hz		0 to 120Hz					
1		ASR			,						
	ď			Control range	1 : 100	1 : 1000	1:10				
	Control specifications		_	Constant output range	·	Up to 1 : 4	Up to 1 · 1				
ľ	ٍ			Control accuracy (At Fmax ≥ 50Hz)	±0.5%	±0.01%	±、 11%,				
				Control response	5Hz	30Hz	<u> </u>				
		Multi-step frequency setting	8 steps Acceleration changeable 5-bit non-en	n/deceleration time as							
	-	Ratio interlock setting		ote setting mode	During remote se	tun. 1 mode					
			y = Ax + B	B + C Operation results	y = Ax + B + C	ati, proculte					
				Operation input	y: Operation results neinting input						
				0.000 to ±10.000		to ±10.000					
				0.00 to ±440Hz Auxiliary input		.7200min₋¹ (120Hz ary input	2)				
				ut upper/lower limit	With output upp						
	Setting	Frequency jump		Three places ca Width can / ari	be s at etween 0.0 ar	nd 10Hz					
(Sel	Slip compensation		on selective nsation gair.)		_					
		Automatic run			step automatic run function						
	-	function	DID 1	Synchro	nous/asynchronous selective						
		Others	PID control Pick-up		Pick-up						
			Automa ic s		Automatic start	Automatic start					
				r instantaneous power	Restart after	Restart after instantaneous power s failure					
			failure		instantaneous power failure	railure					
			Reverse run	prevention	Reverse run	Reverse run prev	rention				
			Traverse pa	ttern	prevention Traverse pattern	Traverse pattern					
r		Standard partel	· · · · · · · · · · · · · · · · · · ·	egment LED × 5 digits a	•	unit display LED: 8	3 points				
			Operation:	Operate with knob and	set keys		•				
		• \ '		Local/remote changeov	er operation, forward r reference/change	ard run/reverse rui	n direct run				
	tbut	O • '	operation, all parameter reference/change, others Unit installation possible (extension cable max. 3m)								
Ļ	Cont. of Inr. at/output	quence input	Fixed: 3 points Programmable: 5 points Sink/source changeable								
	اد	Sequence output		ntact: 1 point (fault) Re		point (programmat	ole)				
	<u>-</u>	- ,	Open collec	tor: 3 points (programm nmable details can be o	lable)	eneed detection in	re-charging				
	ont			everse run, speed reach							
ľ	ပ		reached, ac	celeration, deceleration			•				
		Frequency setting		0V/0 to 5V/1 to 5V							
			FSI: 4 to 20mA/0 to 20mA AUX: 0 to ±10V/0 to ±5V/1 to 5V (Used for the ratio interlock, operation or PID feedback)								
L	- 1	AUX: U to ±1UV/U to ±5V/1 to 5V (Used for the ratio interlock, operation or PID feedback)									

Meter output Preventive Shut-off Fault history Overload withstand level Retry	Overcurrent limit contact Overcurrent, over fault, other self-dialet four faults a Saved details: Probefore shut-off. 150% for 1 minut Inverse time chart 120% for 1 minut I	rvoltage, undervoliagnosis re saved. rimary cause, seconse, 170% for 2.5 seracteristics (variable, 125% for 1 seconse.	n limit variable), over tage, IGBT fault, or endary cause, outputer torque) onds (75% of left vonds (75% of		erload warning ure rise, ground out frequency						
Shut-off Fault history Overload withstand level	Contact Overcurrent, over fault, other self-direct four faults a Saved details: Probefore shut-off. 150% for 1 minut Inverse time charant 120% for 1 minut Inverse time character 120% for 1 minut Inverse 120% for 1 minut Inverse 120% for 1 minut Inverse 120% for 1 minut In	rvoltage, undervoliagnosis re saved. rimary cause, seconde, 170% for 2.5 seracteristics (variable, 125% for 1 secracteristics (variable)	tage, IGBT fault, o endary cause, outp econds (50% of left le torque) onds (75% of left v	verload, temperatu ut current and outp	out frequency						
Fault history Overload withstand level	fault, other self-di Past four faults a Saved details: Pr before shut-off. 150% for 1 minut Inverse time char 120% for 1 minut Inverse time char	iagnosis re saved. rimary cause, seconder, 170% for 2.5 seracteristics (variable, 125% for 1 seconderistics (variable)	econds (50% of left torque) onds (75% of left v	ut current and outp	out frequincy						
Overload withstand level	Past four faults a Saved details: Pr before shut-off. 150% for 1 minut Inverse time char 120% for 1 minut Inverse time char	re saved. rimary cause, seconder, 170% for 2.5 seracteristics (variable, 125% for 1 seconderistics (variable)	econds (50% of left le torque) onds (75% of left v	t values for 3Hz and	d'						
level	Inverse time char 120% for 1 minut Inverse time char	racteristics (variab te, 125% for 1 sec racteristics (variab	le torque) onds (75% of left v								
Retry			Inverse time characteristics (variable torque) 120% for 1 minute, 170% for 2.5 seconds (50% of left values for 3Hz and less) Inverse time characteristics (variable torque) Inverse time characteristics (variable torque)								
-	-										
	NY										
9.1/3											

Appendix 2 Outline Dimension Drawings

Туре	Series	1		Dimensi	ons (mm)			Fig.
200V	400V	V//0	W1	H0	H1	D	ød	
N00K4 N00K7 N01K5 N02K2 N04K0	X00K4 X00K7 X01K5 X02' 2 X14K0	17 ,	155	243	228	162	6	Fig. 1
N05.(5 N07K 5	X05nc X07K5	216	201	275	260	169	7	Fig. 2
N11K0 N.3K0	λ11K0 Χ15K0 Χ18K5	265	245	360	340	228		
N. 3K5 N22 K0	X22K0 X30K0	310	200	500	480	253	10	Fig. 3
30K0 No 1k0	X37K0 X45K0	342	200	590	570	307		
,	X55K0 X75K0	420	300	690	666	309		
	X90K0 X110K	480	400	740	714	352		
	X132K X160K	488	320	980	956	370	13	
	X200K	680	500	1100	1070	379	15	
	X250K X315K	870	600	1300	1270			

Appendix 3 Fault Codes

Code	Display	Fault	Description	Retry
0		No fault	No fault recorded.	×
1	(EmS)	Emergency stop	Indicates that sequence signal EMS has been input in C00-4 = 2 (fault output at emergency stop) mode.	×
2	Pa-n (PM-n)	Power Module	Power module fault n: sub-code 1: during stop 2: during operation at the set speed 3: during acceleration 5: during braking 7: during pre-extension 9: during automatic tuning	0
3	<u>ā</u> [− n (OC-n)	Over current	The output has risen to or beyond 300%. n: sub-code 1: during stop 2: during operation at the set speed 3: during acceleration 5: during braking 7: during pre-extension 9: during automatic	c
4	n (OV-n)	Over voltage	The DC voltage has risen to or beyond the preset level. (√dc ≥ 800 or 400V) n: sub-code 1: during stop 2: during operation at the sociapaec 3: during acceleration 5: during braking 7: during pre-extension 9. furing automatic tuning	0
5	<u>i_i − n</u> (UV-n)	Under voltage	While the drive is running, the DC vol agran's lowered to or beyond the preset level (65% of the rating). n: sub-code 1: during stor 2: during operation at the set speed 3: during accentation 5: during 6: during ACR 7: during operation 9: during automatic tuning At C08-0 = 2, 3 (au omatic start), only the symbol displays, so the FLT LED and terminal bunk F/, FB and FC contacts will not operate. EC0 to 3 will operate	×
6	Not defined		o will operate	
7	uah.	Overheat	The heatsink ten perature has risen to or beyond 95°C.	0
8	55P	Overspeed	Indicate. the motor speed exceeded the overspeed setting value (C24-0).	×
9	Not defined			
A	유는는 - n (ATT-n)	Autor tic turning abnormal competion	n: Automatic tuning step No. (when interrupted) (1) ACR simple setting (2) Single-phase AC measurement (3) ACR adjustment (9) Excitation inductance measurement (A) Secondary resistance measurement (B) Max. torque boost adjustment (C) Excitation inductance fluctuation table adjustment	×
В	<u>āL - n</u> (OL-n)	Overload	Indicate that the output current exceeded the thermal operation time having inverse time characteristics. The standard characteristics are 150% for one minute in respect to the motor rated current. At 155% or more in respect to the inverter rated current, this will be 170% for 2.5 seconds. n: Sub-code 1: Drive output overload	0
C	[]-d. (GRD. n)	Ground	The Drive has sensed a grounded conditions on the output. n: sub-code 1: during stop 2: during operation at the set speed 3: during acceleration 5: during braking 7: during pre-extension 9: during automatic tuning	0

	Display	Fault	Description	Retry
D	¦⊡ - n (IO-n)	I/O Error	There has been an error in communications through the I/O port. n: sub-code 1: Gate Shutdown Circuit error. A feedback signal has disagreed to a Gate Shutdown command. 2: A/D Convertor error. The A/D Convertor has been jammed. 3: Current Detector Offset. The offset of the Current Detector has increased to or beyond 0.5V. 4: Retry time out. Indicates that the operation was not successful within the No. of retries set in C21-0. E: Thermistor fault F: Speed detection fault	×
E	CPU-n)	CPU Error	There has been an error while the CPU, RAM or ROM is in the self-diagnosis mode at power-up. n: sub-code 1: Watch-dog error, indicating that the CPU has been jammed. This fault may appear during at-speed operation. 2: CPU calculation error. 3: CPU RAM error. 4: External RAM error. 6: E²PROM check-sum error. 7: E²PROM read error. 8: E²PROM write error. This error is only displayed, and the gate will not shut down and FLT will not pe occupate. 9: Illegal combination of software version, and CPU.	5
F	라는. (dEr)	E ² PROM Data Error	Indicates that there is an error in the various day stored in the E²PROM. For details, enter the monitor mode: L 20·2, and correct the data. Caution) If this appears when sing an the details will not be stored internally. Thus, af starting up normally, these details cannot be read with a fau thistory (D20-0).	×

Appendix 4 7-segment LED Display

(1) Numeric

Display	0	1	9	3	Ţ	ű	5	<i>[</i> -	œ	m
Numerics	0	1	2	3	4	5	6	7	8	9

(2) Alphabet

Display	8	Ü	С	ü	٤	F	5	H	1	
Alphabet	Α	B (b)	С	D (d)	Е	F	G	Н	I	J
Display	L	Ā	i i	10	Ω	o	-	-	17	
Alphabet		M (m)	N (n)		Þ	Q (q)	D ()		T_(t)	

Display	O	<u> </u>	**	١	٦,
Alphabet	V (v)	Υ	_		<u> </u>
				(Brac	kets)

(3) Message

LBC	LOC	LOCK		2st	LIST
}-!_l;-;	rUn	RUN	7-1-	trC	TRACE
HE'5	rty	RETRY		d.Err	Data ERROR
EHH	Err	ERROR	dEnd	d.End	Data END
		~		d.CHG	Data CHANGE

Function	n <remarks></remarks>	Function	<remarks></remarks>